期刊文献+

Investigating the Effect of Various Nanomaterials on the Wettability of Sandstone Reservoir

Investigating the Effect of Various Nanomaterials on the Wettability of Sandstone Reservoir
下载PDF
导出
摘要 Wettability is the ability of a fluid to stick to a solid surface in the presence of other immiscible fluids. Wettability alteration is crucial as it affects the amount of oil recovered from a given reservoir. The majority of enhanced oil recovery mechanisms purposefully alter the wettability of the reservoir rock from oil-wet to water-wet;to increase the amount of oil recovered from it. This study investigates the effect of various nanomaterials on the wettability, and particularly the brine phase contact angle, of a sand stone reservoir. The nanomaterials used are Magnesium/Aluminum Layered Double Hydroxide, Silica/Zirconia, and a combination of 80.0% Magnesium/Aluminum Layered Double Hydroxide (Mg/Al-LDH) and 20.0% Silica/Zirconia (Zi/Zr). The results suggest that a concentration of 4.0 g/L of Magnesium/Aluminum Layered Double Hydroxide (Mg/Al-LDH) decreases the brine phase contact angle, in the presence of oil, from 66° to 60° in 0.033 minute as opposed to Silica/Zirconia which increases the brine phase contact angle to 68° in the same time interval. The combination of both nanoparticles results in a decrease of 1.0° in the brine phase contact angle indicating that Silica/Zirconia (Zi/Zr) lowers the efficiency of Magnesium/Aluminum Layered Double Hydroxide’s adsorption to the sandstone surface. Wettability is the ability of a fluid to stick to a solid surface in the presence of other immiscible fluids. Wettability alteration is crucial as it affects the amount of oil recovered from a given reservoir. The majority of enhanced oil recovery mechanisms purposefully alter the wettability of the reservoir rock from oil-wet to water-wet;to increase the amount of oil recovered from it. This study investigates the effect of various nanomaterials on the wettability, and particularly the brine phase contact angle, of a sand stone reservoir. The nanomaterials used are Magnesium/Aluminum Layered Double Hydroxide, Silica/Zirconia, and a combination of 80.0% Magnesium/Aluminum Layered Double Hydroxide (Mg/Al-LDH) and 20.0% Silica/Zirconia (Zi/Zr). The results suggest that a concentration of 4.0 g/L of Magnesium/Aluminum Layered Double Hydroxide (Mg/Al-LDH) decreases the brine phase contact angle, in the presence of oil, from 66° to 60° in 0.033 minute as opposed to Silica/Zirconia which increases the brine phase contact angle to 68° in the same time interval. The combination of both nanoparticles results in a decrease of 1.0° in the brine phase contact angle indicating that Silica/Zirconia (Zi/Zr) lowers the efficiency of Magnesium/Aluminum Layered Double Hydroxide’s adsorption to the sandstone surface.
出处 《World Journal of Engineering and Technology》 2015年第3期116-126,共11页 世界工程和技术(英文)
关键词 NANOMATERIALS WETTABILITY ALTERATION OIL RECOVERY Mechanism Nanomaterials Wettability Alteration Oil Recovery Mechanism
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部