期刊文献+

Modelling of the Radiological Contamination of the RBMK-1500 Reactor Control and Protection System Channels’ Cooling Circuit

Modelling of the Radiological Contamination of the RBMK-1500 Reactor Control and Protection System Channels’ Cooling Circuit
下载PDF
导出
摘要 The article presents results of modelling and analysis of component contamination of the RBMK- 1500 reactor Control and Protection System channels’ Cooling Circuit (CPSCC) at Ignalina NPP Unit 1. The modelling was performed using a computer code LLWAA-DECOM (Tractebel Energy Engineering, Belgium), taking into consideration CPSCC components characteristics, parameters of the water flowing in the circuits, system work regimes, etc. During the modelling, results on activity of CPSCC components’ deposits, nuclide composition of the deposits and dose rates after the final shutdown of the reactor, as well as activity decay of the most contaminated CPSCC components’ deposits were obtained. Analysis showed that there is a significant difference in contamination levels between CPSCC components. The rundown header from the channels of the reactor’s fast acting scram system is the most contaminated component, and contamination of the least contaminated component is only 0.27% compared to the activity of the most contaminated component. Corrosion nuclides are the nuclides that mostly contribute to contamination of the CPSCC deposits. The article presents results of modelling and analysis of component contamination of the RBMK- 1500 reactor Control and Protection System channels’ Cooling Circuit (CPSCC) at Ignalina NPP Unit 1. The modelling was performed using a computer code LLWAA-DECOM (Tractebel Energy Engineering, Belgium), taking into consideration CPSCC components characteristics, parameters of the water flowing in the circuits, system work regimes, etc. During the modelling, results on activity of CPSCC components’ deposits, nuclide composition of the deposits and dose rates after the final shutdown of the reactor, as well as activity decay of the most contaminated CPSCC components’ deposits were obtained. Analysis showed that there is a significant difference in contamination levels between CPSCC components. The rundown header from the channels of the reactor’s fast acting scram system is the most contaminated component, and contamination of the least contaminated component is only 0.27% compared to the activity of the most contaminated component. Corrosion nuclides are the nuclides that mostly contribute to contamination of the CPSCC deposits.
出处 《World Journal of Engineering and Technology》 2015年第3期1-5,共5页 世界工程和技术(英文)
关键词 Ignalina NPP RBMK-1500 REACTOR RADIOLOGICAL CONTAMINATION Ignalina NPP RBMK-1500 Reactor Radiological Contamination
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部