期刊文献+

Intelligent HEV Fuzzy Logic Control Strategy Based on Identification and Prediction of Drive Cycle and Driving Trend 被引量:1

Intelligent HEV Fuzzy Logic Control Strategy Based on Identification and Prediction of Drive Cycle and Driving Trend
下载PDF
导出
摘要 Real-time drive cycles and driving trends have a vital impact on fuel consumption and emissions in a vehicle. To address this issue, an original and alternative approach which incorporates the knowledge about real-time drive cycles and driving trends into fuzzy logic control strategy was proposed. A machine learning framework called MC_FRAME was established, which includes two neural networks for self-learning and making predictions. An intelligent fuzzy logic control strategy based on the MC_FRAME was then developed in a hybrid electric vehicle system, which is called FLCS_MODEL. Simulations were conducted to evaluate the FLCS_MODEL using ADVISOR. The simulation results indicated that comparing with the default controller on the drive cycle NEDC, the FLCS_MODEL saves 12.25% fuel per hundred kilometers, with the HC emissions increasing by 22.7%, the CO emissions reducing by 16.5%, the NOx emissions reducing by 37.5% and with the PM emissions reducing by 12.9%. A conclusion can be drawn that the proposed approach realizes fewer fuel consumption and less emissions. Real-time drive cycles and driving trends have a vital impact on fuel consumption and emissions in a vehicle. To address this issue, an original and alternative approach which incorporates the knowledge about real-time drive cycles and driving trends into fuzzy logic control strategy was proposed. A machine learning framework called MC_FRAME was established, which includes two neural networks for self-learning and making predictions. An intelligent fuzzy logic control strategy based on the MC_FRAME was then developed in a hybrid electric vehicle system, which is called FLCS_MODEL. Simulations were conducted to evaluate the FLCS_MODEL using ADVISOR. The simulation results indicated that comparing with the default controller on the drive cycle NEDC, the FLCS_MODEL saves 12.25% fuel per hundred kilometers, with the HC emissions increasing by 22.7%, the CO emissions reducing by 16.5%, the NOx emissions reducing by 37.5% and with the PM emissions reducing by 12.9%. A conclusion can be drawn that the proposed approach realizes fewer fuel consumption and less emissions.
出处 《World Journal of Engineering and Technology》 2015年第3期215-226,共12页 世界工程和技术(英文)
关键词 HEV NEURAL Network DRIVE CYCLE PREDICTION Driving TREND PREDICTION HEV Neural Network Drive Cycle Prediction Driving Trend Prediction
  • 相关文献

同被引文献3

引证文献1

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部