摘要
As part of an international research project—funded by the European Union—capillary glasses for facades are being developed exploiting storage energy by means of fluids flowing through the capillaries. To meet highest visual demands, acrylate adhesives and EVA films are tested as possible bonding materials for the glass setup. Especially non-destructive methods (visual analysis, analysis of birefringent properties and computed tomographic data) are applied to evaluate failure patterns as well as the long-term behavior considering climatic influences. The experimental investigations are presented after different loading periods, providing information of failure developments. In addition, detailed information and scientific findings on the application of computed tomographic analyses are presented.
As part of an international research project—funded by the European Union—capillary glasses for facades are being developed exploiting storage energy by means of fluids flowing through the capillaries. To meet highest visual demands, acrylate adhesives and EVA films are tested as possible bonding materials for the glass setup. Especially non-destructive methods (visual analysis, analysis of birefringent properties and computed tomographic data) are applied to evaluate failure patterns as well as the long-term behavior considering climatic influences. The experimental investigations are presented after different loading periods, providing information of failure developments. In addition, detailed information and scientific findings on the application of computed tomographic analyses are presented.