期刊文献+

Fluid Dynamics Simulation of High Speed Jet under Distinct Initial Input Velocities

Fluid Dynamics Simulation of High Speed Jet under Distinct Initial Input Velocities
下载PDF
导出
摘要 The aim of this study is to execute the fluid dynamics simulation of high speed jet under distinct input velocities (i.e., 114.1, 142.4, 165.6, 186.2 and 286.9 m/s). In particular, this study focuses on the impact velocity and velocity of two-phase flow (gas-liquid). Firstly, the three-dimensional geometric model of high speed jet is established on the basis of the actual operational conditions. Next, the unstructured grids of high speed jet are generated by means of ANSYS Fluent. Finally, the fluid dynamics simulation of high speed jet is implemented by using Fluent. The simulation results show that when the input velocity of the liquid increases, the impact velocity declines sharply, while according to the Bonuli law of conservation of energy, the impact effect on the device shows exponential growth with increasing input velocity. In addition, the relationship between the impact velocity and the input velocity and the relationship between the impact effect on the device and the input velocity are achieved, which could provide certain theoretical guidance for predicting the working pressure and velocity of high speed jet based on real input velocity. The aim of this study is to execute the fluid dynamics simulation of high speed jet under distinct input velocities (i.e., 114.1, 142.4, 165.6, 186.2 and 286.9 m/s). In particular, this study focuses on the impact velocity and velocity of two-phase flow (gas-liquid). Firstly, the three-dimensional geometric model of high speed jet is established on the basis of the actual operational conditions. Next, the unstructured grids of high speed jet are generated by means of ANSYS Fluent. Finally, the fluid dynamics simulation of high speed jet is implemented by using Fluent. The simulation results show that when the input velocity of the liquid increases, the impact velocity declines sharply, while according to the Bonuli law of conservation of energy, the impact effect on the device shows exponential growth with increasing input velocity. In addition, the relationship between the impact velocity and the input velocity and the relationship between the impact effect on the device and the input velocity are achieved, which could provide certain theoretical guidance for predicting the working pressure and velocity of high speed jet based on real input velocity.
出处 《World Journal of Engineering and Technology》 2018年第3期1-7,共7页 世界工程和技术(英文)
关键词 Fluid Dynamics ANSYS Fluent Input VELOCITY IMPACT Pressure IMPACT VELOCITY IMPACT Effect Fluid Dynamics ANSYS Fluent Input Velocity Impact Pressure Impact Velocity Impact Effect
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部