期刊文献+

Development of Path Planning Algorithm Using Probabilistic Roadmap Based on Modified Ant Colony Optimization 被引量:2

Development of Path Planning Algorithm Using Probabilistic Roadmap Based on Modified Ant Colony Optimization
下载PDF
导出
摘要 In this paper, a unique combination among probabilistic roadmap, modified ant colony optimization, and third order B-spline curve has been proposed to solve path planning problems?in complex and very complex environments. This proposed approach can be divided into three stages. First stage involves constructing a random roadmap depending on the environment complexity using probabilistic roadmap algorithm. Roadmap can be constructed by distributing N nodes randomly in complex and very complex static environments then pairing these nodes together according to some criteria or conditions. The constructed roadmap contains a huge number of possible random paths that may lead to connecting?the start and the goal points together. Second stage includes finding path within the pre-constructed roadmap. Modified ant colony optimization has been proposed to find or to search the best path between start and goal points, where in addition to the proposed combination, ACO has been modified to increase its ability to find shorter path. Finally, the third stage uses B-spline curve?to smooth and reduce the total length of the found path in the previous stage. The results of the proposed approach ensure?the?feasible?path between start and goal points in complex and very complex environments. Also, the path is guaranteed to be short, smooth, continuous?and safe. In this paper, a unique combination among probabilistic roadmap, modified ant colony optimization, and third order B-spline curve has been proposed to solve path planning problems?in complex and very complex environments. This proposed approach can be divided into three stages. First stage involves constructing a random roadmap depending on the environment complexity using probabilistic roadmap algorithm. Roadmap can be constructed by distributing N nodes randomly in complex and very complex static environments then pairing these nodes together according to some criteria or conditions. The constructed roadmap contains a huge number of possible random paths that may lead to connecting?the start and the goal points together. Second stage includes finding path within the pre-constructed roadmap. Modified ant colony optimization has been proposed to find or to search the best path between start and goal points, where in addition to the proposed combination, ACO has been modified to increase its ability to find shorter path. Finally, the third stage uses B-spline curve?to smooth and reduce the total length of the found path in the previous stage. The results of the proposed approach ensure?the?feasible?path between start and goal points in complex and very complex environments. Also, the path is guaranteed to be short, smooth, continuous?and safe.
出处 《World Journal of Engineering and Technology》 2019年第4期583-597,共15页 世界工程和技术(英文)
关键词 Path Planning PROBABILISTIC ROADMAP ANT COLONY Optimization B-SPLINE CURVE Path Planning Probabilistic Roadmap Ant colony Optimization B-Spline Curve
  • 相关文献

同被引文献16

引证文献2

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部