摘要
In order to increase the available power of the electrical energy distribution station and improve the voltage profile of the distribution lines, the use of shunt capacitor banks is indicated. The main results obtained during this study are: a reduction in subscribed power from 14913.978 kVA to 14010.100 kVA, a reduction in the transformer load rate from 99.4% to 93.4%, a reduction in reactive power called from 5481.729 kVAr to 481.729 kVAr, an increase in the active power transported by the substation from 8505.062 kW to 8962.323 kW, a reduction in the voltage drop from 4.8% to 3.9%, an increase in the power available at the secondary of the transformer station at full load from 13950 kW to 14700 kW and an annual electrical energy saving of 339943.48 kWh of electrical energy, therefore fuel savings and a reduction in CO<sub>2</sub> and SO<sub>2</sub> emissions due to this energy saving will be achieved. The installation of capacitor banks for optimization of reactive energy allowed a reduction in the current called therefore a reduction in the absorbed power: 14153.061 kVA, i.e. a reduction of 903.876 kVA. It is therefore essential that energy players are convinced of the need to install capacitors to reduce or even eliminate their reactive energy bill. This is necessarily accompanied by an investment by Electricité De Guinée by setting up active and reactive energy meters but also by implementing pricing in line with the reduction in the transfer of reactive energy in the network.
In order to increase the available power of the electrical energy distribution station and improve the voltage profile of the distribution lines, the use of shunt capacitor banks is indicated. The main results obtained during this study are: a reduction in subscribed power from 14913.978 kVA to 14010.100 kVA, a reduction in the transformer load rate from 99.4% to 93.4%, a reduction in reactive power called from 5481.729 kVAr to 481.729 kVAr, an increase in the active power transported by the substation from 8505.062 kW to 8962.323 kW, a reduction in the voltage drop from 4.8% to 3.9%, an increase in the power available at the secondary of the transformer station at full load from 13950 kW to 14700 kW and an annual electrical energy saving of 339943.48 kWh of electrical energy, therefore fuel savings and a reduction in CO<sub>2</sub> and SO<sub>2</sub> emissions due to this energy saving will be achieved. The installation of capacitor banks for optimization of reactive energy allowed a reduction in the current called therefore a reduction in the absorbed power: 14153.061 kVA, i.e. a reduction of 903.876 kVA. It is therefore essential that energy players are convinced of the need to install capacitors to reduce or even eliminate their reactive energy bill. This is necessarily accompanied by an investment by Electricité De Guinée by setting up active and reactive energy meters but also by implementing pricing in line with the reduction in the transfer of reactive energy in the network.
作者
Jean Ouèrè Toupouvogui
Mohamed Ansoumane Camara
Ansoumane Sakouvogui
Mamby Keita
Jean Ouèrè Toupouvogui;Mohamed Ansoumane Camara;Ansoumane Sakouvogui;Mamby Keita(Department of Instrumentation and Physical Measurements, Higher Institute of Technology, Mamou, Guinea;Electrical Engineering Department, Polytechnic Institute, Gamal Abdel Nasser University, Conakry, Guinea;Energy Department, Higher Institute of Technology, Mamou, Guinea;Department of Physics, Faculty of Sciences, Gamal Abdel Nasser University, Conakry, Guinea)