期刊文献+

Study of Dielectric Relaxation of Insulating Oil from Lagenaria siceraria Seeds

Study of Dielectric Relaxation of Insulating Oil from Lagenaria siceraria Seeds
下载PDF
导出
摘要 The present work concerns the study of the dielectric relaxation of dielectric oil based on Lagenaria siceraria (calabash) seeds. Dielectric spectroscopy was used to measure the loss angle, the dielectric constant and the electrical modulus. Three relaxation processes in calabash oil were identified. It was also found that the relative permittivity decreases with increasing temperature and frequency. A study of the imaginary part of the electrical modulus was done and revealed a relaxation process at low frequencies. At higher frequencies, the dielectric relaxation is thermally activated. The increase in temperature leads to a decrease in the relaxation rate. The result obtained indicates that relaxation type is not of the Debye type in the high-frequency region. The Cole-Cole model of the imaginary part of the permittivity as a function of its real part in calabash oil for different temperatures was drawn and analyzed. It shows the existence of a negative temperature coefficient of resistance in the fluid and helps identifying a relaxation process in the conductivity of the sample studied. It highlights the presence of Debye relaxation which characterizes the presence of an abnormal dispersion of the dielectric constant over a frequency range. Calabash seed oil exhibits better dielectric constant (relative permittivity) compared to other oils. The present work concerns the study of the dielectric relaxation of dielectric oil based on Lagenaria siceraria (calabash) seeds. Dielectric spectroscopy was used to measure the loss angle, the dielectric constant and the electrical modulus. Three relaxation processes in calabash oil were identified. It was also found that the relative permittivity decreases with increasing temperature and frequency. A study of the imaginary part of the electrical modulus was done and revealed a relaxation process at low frequencies. At higher frequencies, the dielectric relaxation is thermally activated. The increase in temperature leads to a decrease in the relaxation rate. The result obtained indicates that relaxation type is not of the Debye type in the high-frequency region. The Cole-Cole model of the imaginary part of the permittivity as a function of its real part in calabash oil for different temperatures was drawn and analyzed. It shows the existence of a negative temperature coefficient of resistance in the fluid and helps identifying a relaxation process in the conductivity of the sample studied. It highlights the presence of Debye relaxation which characterizes the presence of an abnormal dispersion of the dielectric constant over a frequency range. Calabash seed oil exhibits better dielectric constant (relative permittivity) compared to other oils.
作者 Michael Koumbou Piembe Jean Ndoumbe Charles Hubert Kom Michael Koumbou Piembe;Jean Ndoumbe;Charles Hubert Kom(Laboratory of Electronics, Electrotechnics, Automation and Telecommunications, National Higher Polytechnic School of Douala, University of Douala, Douala, Cameroon;Laboratory of Computer Engineering, Data Science and Artificial Intelligence, National Higher Polytechnic School of Douala, University of Douala, Douala, Cameroon)
出处 《World Journal of Engineering and Technology》 2024年第4期821-835,共15页 世界工程和技术(英文)
关键词 Dielectric Relaxation Electric Modulus Calabash Seed Oil Dielectric Spectroscopy Cole-Cole Model Debye Model Dielectric Relaxation Electric Modulus Calabash Seed Oil Dielectric Spectroscopy Cole-Cole Model Debye Model
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部