期刊文献+

Decipher Clinical and Genetic Underpins of Breast Cancer Survival with Machine Learning Methods

Decipher Clinical and Genetic Underpins of Breast Cancer Survival with Machine Learning Methods
下载PDF
导出
摘要 Breast cancer is one of the most common cancers among women in the world, with more than two million new cases of breast cancer every year. This disease is associated with numerous clinical and genetic characteristics. In recent years, machine learning technology has been increasingly applied to the medical field, including predicting the risk of malignant tumors such as breast cancer. Based on clinical and targeted sequencing data of 1980 primary breast cancer samples, this article aimed to analyze these data and predict living conditions after breast cancer. After data engineering, feature selection, and comparison of machine learning methods, the light gradient boosting machine model was found the best with hyperparameter tuning (precision = 0.818, recall = 0.816, f1 score = 0.817, roc-auc = 0.867). And the top 5 determinants were clinical features age at diagnosis, Nottingham Prognostic Index, cohort and genetic features rheb, nr3c1. The study shed light on rational allocation of medical resources and provided insights to early prevention, diagnosis and treatment of breast cancer with the identified risk clinical and genetic factors. Breast cancer is one of the most common cancers among women in the world, with more than two million new cases of breast cancer every year. This disease is associated with numerous clinical and genetic characteristics. In recent years, machine learning technology has been increasingly applied to the medical field, including predicting the risk of malignant tumors such as breast cancer. Based on clinical and targeted sequencing data of 1980 primary breast cancer samples, this article aimed to analyze these data and predict living conditions after breast cancer. After data engineering, feature selection, and comparison of machine learning methods, the light gradient boosting machine model was found the best with hyperparameter tuning (precision = 0.818, recall = 0.816, f1 score = 0.817, roc-auc = 0.867). And the top 5 determinants were clinical features age at diagnosis, Nottingham Prognostic Index, cohort and genetic features rheb, nr3c1. The study shed light on rational allocation of medical resources and provided insights to early prevention, diagnosis and treatment of breast cancer with the identified risk clinical and genetic factors.
作者 Zhengkai Zhuang Zhengkai Zhuang(College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China)
出处 《Advances in Breast Cancer Research》 2023年第4期163-185,共23页 乳腺癌(英文)
关键词 Machine Learning Breast Cancer Prediction Data Analysis Feature Importance Comparison Machine Learning Breast Cancer Prediction Data Analysis Feature Importance Comparison
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部