期刊文献+

LDN-73794 Attenuated LRRK2-Induced Degeneration in a <i>Drosophila</i>Parkinson’s Disease Model

LDN-73794 Attenuated LRRK2-Induced Degeneration in a <i>Drosophila</i>Parkinson’s Disease Model
下载PDF
导出
摘要 Parkinson’s disease (PD) is a common neurodegenerative disease with unclear pathogenesis. Currently, there are no disease-modifying neuron-protecting drugs to slow down the neuronal degeneration. Mutations in the leucine-rich repeat kinase 2 (LRRK2) cause genetic forms of PD and contribute to sporadic PD as well. Disruption of LRRK2 kinase functions has become one of the potential mechanisms underlying disease-linked mutation-induced neuronal degeneration. To further characterize the pharmacological effects of a reported LRRK2 kinase inhibitor, LDN-73794, in vitro cell models and a LRRK2 Drosophila PD model were used. LDN-73794 reduced LRRK2 kinase activity in vitro and in vivo. Moreover, LDN-73794 increased survival, improved locomotor activity, and suppressed DA neuron loss in LRRK2 transgenic flies. These results suggest that inhibition of LRRK2 kinase activity can be a potential therapeutic strategy for PD intervention and LDN-73794 could be a potential lead compound for developing neuroprotective therapeutics. Parkinson’s disease (PD) is a common neurodegenerative disease with unclear pathogenesis. Currently, there are no disease-modifying neuron-protecting drugs to slow down the neuronal degeneration. Mutations in the leucine-rich repeat kinase 2 (LRRK2) cause genetic forms of PD and contribute to sporadic PD as well. Disruption of LRRK2 kinase functions has become one of the potential mechanisms underlying disease-linked mutation-induced neuronal degeneration. To further characterize the pharmacological effects of a reported LRRK2 kinase inhibitor, LDN-73794, in vitro cell models and a LRRK2 Drosophila PD model were used. LDN-73794 reduced LRRK2 kinase activity in vitro and in vivo. Moreover, LDN-73794 increased survival, improved locomotor activity, and suppressed DA neuron loss in LRRK2 transgenic flies. These results suggest that inhibition of LRRK2 kinase activity can be a potential therapeutic strategy for PD intervention and LDN-73794 could be a potential lead compound for developing neuroprotective therapeutics.
出处 《Advances in Parkinson's Disease》 2015年第3期49-58,共10页 帕金森(英文)
关键词 LRRK2 Parkinson’s Disease LDN-73794 Kinase Activity Neuronal DEGENERATION Dopamine Neuron DROSOPHILA Model LRRK2 Parkinson’s Disease LDN-73794 Kinase Activity Neuronal Degeneration Dopamine Neuron Drosophila Model
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部