期刊文献+

Simulation Program to Determine Sample Size and Power for a Multiple Logistic Regression Model with Unspecified Covariate Distributions

Simulation Program to Determine Sample Size and Power for a Multiple Logistic Regression Model with Unspecified Covariate Distributions
下载PDF
导出
摘要 Binary logistic regression models are commonly used to assess the association between outcomes and covariates. Many covariates are inherently continuous, and have a variety of distributions, including those that are heavily skewed to the left or right. Existing theoretical formulas, criteria, and simulation programs cannot accurately estimate the sample size and power of non-standard distributions. Therefore, we have developed a simulation program that uses Monte Carlo methods to estimate the exact power of a binary logistic regression model. This power calculation can be used for distributions of any shape and covariates of any type (continuous, ordinal, and nominal), and can account for nonlinear relationships between covariates and outcomes. For illustrative purposes, this simulation program is applied to real data obtained from a study on the influence of smoking on 90-day outcomes after acute atherothrombotic stroke. Our program is applicable to all effect sizes and makes it possible to apply various statistical methods, logistic regression and related simulations such as Bayesian inference with some modifications. Binary logistic regression models are commonly used to assess the association between outcomes and covariates. Many covariates are inherently continuous, and have a variety of distributions, including those that are heavily skewed to the left or right. Existing theoretical formulas, criteria, and simulation programs cannot accurately estimate the sample size and power of non-standard distributions. Therefore, we have developed a simulation program that uses Monte Carlo methods to estimate the exact power of a binary logistic regression model. This power calculation can be used for distributions of any shape and covariates of any type (continuous, ordinal, and nominal), and can account for nonlinear relationships between covariates and outcomes. For illustrative purposes, this simulation program is applied to real data obtained from a study on the influence of smoking on 90-day outcomes after acute atherothrombotic stroke. Our program is applicable to all effect sizes and makes it possible to apply various statistical methods, logistic regression and related simulations such as Bayesian inference with some modifications.
出处 《Health》 2014年第21期2973-2998,共26页 健康(英文)
关键词 LOGISTIC Regression Model MONTE Carlo Simulation Non-Standard DISTRIBUTIONS Nonlinear POWER SAMPLE Size Skewed Distribution Logistic Regression Model Monte Carlo Simulation Non-Standard Distributions Nonlinear Power Sample Size Skewed Distribution
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部