期刊文献+

Changes in Myofibrillar and Mitochondrial Compartments during Increased Activity: Dependance from Oxidative Capacity of Muscle 被引量:1

Changes in Myofibrillar and Mitochondrial Compartments during Increased Activity: Dependance from Oxidative Capacity of Muscle
下载PDF
导出
摘要 Striated muscle tissue contains fibers with high oxidative capacity (heart muscle), higher oxidative capacity (type I and IIA fibers of skeletal muscle) and low oxidative capacity (type IIB/X fibers of skeletal muscle). Muscle fibers with higher oxidative capacity contain large mitochondria tightly packed with cristae as well as small forms of mitochondria containing relatively few cristae. The intensive development of the mitochondrial apparatus in the post-activity period reflects the adaptive processes, which is intended to supply the increased energy requirements of muscle fibers with higher oxidative capacity. Muscle fibers with low oxidative capacity contain significantly less mitochondria than fibers with higher capacity. It is typical to type IIB fibers that after intensive muscle activity there are damaged myofibrils in a relatively small area, some myofibrils are twisted and lose the connection with the neighboring structures. It is still not fully known how skeletal muscles with different oxidative capacity respond to an increased functional activity and what differences exist in these fibers between oxidative capacity and function of myofibrils. The aim of the present short review was to compare structural-functional changes in mitochondrial and myofibrillar compartments of heart and skeletal muscle fibers with different oxidative capacity and the effect of increased functional activity on the interaction of these compartments. Striated muscle tissue contains fibers with high oxidative capacity (heart muscle), higher oxidative capacity (type I and IIA fibers of skeletal muscle) and low oxidative capacity (type IIB/X fibers of skeletal muscle). Muscle fibers with higher oxidative capacity contain large mitochondria tightly packed with cristae as well as small forms of mitochondria containing relatively few cristae. The intensive development of the mitochondrial apparatus in the post-activity period reflects the adaptive processes, which is intended to supply the increased energy requirements of muscle fibers with higher oxidative capacity. Muscle fibers with low oxidative capacity contain significantly less mitochondria than fibers with higher capacity. It is typical to type IIB fibers that after intensive muscle activity there are damaged myofibrils in a relatively small area, some myofibrils are twisted and lose the connection with the neighboring structures. It is still not fully known how skeletal muscles with different oxidative capacity respond to an increased functional activity and what differences exist in these fibers between oxidative capacity and function of myofibrils. The aim of the present short review was to compare structural-functional changes in mitochondrial and myofibrillar compartments of heart and skeletal muscle fibers with different oxidative capacity and the effect of increased functional activity on the interaction of these compartments.
出处 《Health》 2017年第5期779-798,共20页 健康(英文)
关键词 Striated MUSCLE Tissue Oxidative Capacity MITOCHONDRIAL and Myofibrillar COMPARTMENT INCREASED Functional ACTIVITY Striated Muscle Tissue Oxidative Capacity Mitochondrial and Myofibrillar Compartment Increased Functional Activity
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部