期刊文献+

Preclinical Verification of Modulated Electro-Hyperthermia—Part III. Immunogenic Effects

Preclinical Verification of Modulated Electro-Hyperthermia—Part III. Immunogenic Effects
下载PDF
导出
摘要 The modulated electro-hyperthermia (mEHT) method is a unique approach that utilizes all the essential apoptotic pathways through an external radiofrequency (RF) signal. The high-frequency RF is amplitude-modulated and coupled capacitively to the target. The provided energy triggers the death receptors and FAS-FADD complexes in the malignant cells. Multi-pathway apoptosis produces immunogenic cell death (ICD). This ICD provides intracellular information about cancer cells by releasing damage-associated molecular patterns (DAMP), including membrane expression of calreticulin (CRT) and extracellular ATP, HMGB1, and HSP70, executing tumor-specific antigen presentation. The antigen-presenting cells (APCs) play a crucial role in reestablishing immune surveillance and hampering the tumor cells’ ability to hide, thereby evading immune attacks. The matured DCs (generally APCs) produce tumor-specific killer and helper T-cells, which have the potential to be active in distant metastases from the treated location. This unique mechanism of action underscores its potential in cancer treatment and extends the local mEHT treatment to the whole body anticancer therapy with an abscopal effect. The modulated electro-hyperthermia (mEHT) method is a unique approach that utilizes all the essential apoptotic pathways through an external radiofrequency (RF) signal. The high-frequency RF is amplitude-modulated and coupled capacitively to the target. The provided energy triggers the death receptors and FAS-FADD complexes in the malignant cells. Multi-pathway apoptosis produces immunogenic cell death (ICD). This ICD provides intracellular information about cancer cells by releasing damage-associated molecular patterns (DAMP), including membrane expression of calreticulin (CRT) and extracellular ATP, HMGB1, and HSP70, executing tumor-specific antigen presentation. The antigen-presenting cells (APCs) play a crucial role in reestablishing immune surveillance and hampering the tumor cells’ ability to hide, thereby evading immune attacks. The matured DCs (generally APCs) produce tumor-specific killer and helper T-cells, which have the potential to be active in distant metastases from the treated location. This unique mechanism of action underscores its potential in cancer treatment and extends the local mEHT treatment to the whole body anticancer therapy with an abscopal effect.
作者 Andras Szasz Andras Szasz(Department of Biotechnics, Hungarian University of Agriculture and Life Sciences, Gdll, Hungary)
出处 《International Journal of Clinical Medicine》 CAS 2024年第7期335-364,共30页 临床医学国际期刊(英文)
关键词 mEHT Cancer Thermal Nonthermal IMMUNOGENIC ICD DAMP Tumor-Specific Immune mEHT Cancer Thermal Nonthermal Immunogenic ICD DAMP Tumor-Specific Immune
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部