期刊文献+

A Case for “Radiolysis” in Radiotherapy of Keloids

A Case for “Radiolysis” in Radiotherapy of Keloids
下载PDF
导出
摘要 Successful treatment of keloids has eluded the medical community since their first description. Multitudes of therapeutic options are available, but none achieves satisfactory resolution of keloids. One major stumbling block is lack of understanding about their genesis. Assuming keloids are tumors, attempts have been made to treat this condition with standard radiotherapy, with dismal results. Keloidal masses are not an active biological entity. They are aggregations of cellular, hypovascular, hypoxic bundles of collagen, which are produced by atypical fibroblasts in the wounds and eventually cease production due to a hostile biological environment. Having no demonstrable inherent process of disposal of these collagen bundles, this excessive collagen tends to linger to form the bulk of keloids. The lesions eventually become symptomatic and aesthetically unacceptable, and therapeutic intervention is sought. Of all available treatments, such as post-resection radiotherapy, primary radiotherapy in selected cases and primary brachytherapy stand out above any other form of treatment. Be it brachytherapy or external beam treatment, one fundamental aspect of radiation action is the process of “radiolysis”, explaining why “radiobiological” approaches have been ineffective. Successful treatment of keloids has eluded the medical community since their first description. Multitudes of therapeutic options are available, but none achieves satisfactory resolution of keloids. One major stumbling block is lack of understanding about their genesis. Assuming keloids are tumors, attempts have been made to treat this condition with standard radiotherapy, with dismal results. Keloidal masses are not an active biological entity. They are aggregations of cellular, hypovascular, hypoxic bundles of collagen, which are produced by atypical fibroblasts in the wounds and eventually cease production due to a hostile biological environment. Having no demonstrable inherent process of disposal of these collagen bundles, this excessive collagen tends to linger to form the bulk of keloids. The lesions eventually become symptomatic and aesthetically unacceptable, and therapeutic intervention is sought. Of all available treatments, such as post-resection radiotherapy, primary radiotherapy in selected cases and primary brachytherapy stand out above any other form of treatment. Be it brachytherapy or external beam treatment, one fundamental aspect of radiation action is the process of “radiolysis”, explaining why “radiobiological” approaches have been ineffective.
出处 《International Journal of Medical Physics, Clinical Engineering and Radiation Oncology》 2014年第4期226-234,共9页 医学物理学、临床工程、放射肿瘤学(英文)
关键词 Radiotheraphy RADIOLYSIS KELOID TREATMENT Radiotheraphy Radiolysis Keloid Treatment
  • 相关文献

参考文献1

二级参考文献2

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部