摘要
The ambient dose of radiation therapy and nuclear medicine units of Clinical Oncology Hospital, Menoufia University were investigated using thermoluminescence dosimeter MTS-700 and surveymeter (Inspector Radiation Alert). The maximum% difference between read out of both MTS-700 (TLD) and surveymeter did not exceed 6% and 8% for the two hospital units respectively. Values of the annual ambient dose received in both hospital units were found to be incompliant with radiation protection regulations. In addition, the extremity effective dose Hp (0.07) of staff in nuclear medicine unit was measured using wrist and finger techniques. Results indicate in-homogenies distribution of fingertips doses. Radiation doses received by the wrists and fingertips of radiopharmaceutical staff preparing 99mTc syringe were observed to be higher by a factor of about 1.41 and 1.44 respectively than those for the administrating staff whom injecting patients by 99mTc syringe, but also still in congruent with international radiation protection regulations.
The ambient dose of radiation therapy and nuclear medicine units of Clinical Oncology Hospital, Menoufia University were investigated using thermoluminescence dosimeter MTS-700 and surveymeter (Inspector Radiation Alert). The maximum% difference between read out of both MTS-700 (TLD) and surveymeter did not exceed 6% and 8% for the two hospital units respectively. Values of the annual ambient dose received in both hospital units were found to be incompliant with radiation protection regulations. In addition, the extremity effective dose Hp (0.07) of staff in nuclear medicine unit was measured using wrist and finger techniques. Results indicate in-homogenies distribution of fingertips doses. Radiation doses received by the wrists and fingertips of radiopharmaceutical staff preparing 99mTc syringe were observed to be higher by a factor of about 1.41 and 1.44 respectively than those for the administrating staff whom injecting patients by 99mTc syringe, but also still in congruent with international radiation protection regulations.