期刊文献+

How the Brain Process Stimulus-Response Conflict? New Insights from Lateralized Readiness Potentials Scalp Topography and Reaction Times

How the Brain Process Stimulus-Response Conflict? New Insights from Lateralized Readiness Potentials Scalp Topography and Reaction Times
下载PDF
导出
摘要 Stimulus-Response Compatibility (SRC) refers to the fact that some tasks are performed easier and better than others because of the way stimuli and responses are paired with each other. To assess the brain responses to stimulus-response conflicts, we investigated the behavioral (accuracy and Reaction Times: RTs) as well as the physiological response (Lateralized Readiness Potentials: LRP) modulations in a positional blocked and a conditional mixed design in twelve university students. Results revealed that the performance was less accurate and the RTs, as well as the LRP onset, were delayed under the mixed conditional design. A greater compatibility effect was also noted on accuracy, RTs and LRP onset latency in the mixed design. Consistent with these findings, smaller peak activation at fronto-central areas suggests that more selective inhibition is needed in a mixed design context. Despite a smaller activation, the topographical distribution is similar in both designs. These results indicate that the translation time between stimulus- and response codes are greater under the mixed instruction, while the similar LRP topography suggests that common neural structures underlie LRPs in response to both type of designs. Stimulus-Response Compatibility (SRC) refers to the fact that some tasks are performed easier and better than others because of the way stimuli and responses are paired with each other. To assess the brain responses to stimulus-response conflicts, we investigated the behavioral (accuracy and Reaction Times: RTs) as well as the physiological response (Lateralized Readiness Potentials: LRP) modulations in a positional blocked and a conditional mixed design in twelve university students. Results revealed that the performance was less accurate and the RTs, as well as the LRP onset, were delayed under the mixed conditional design. A greater compatibility effect was also noted on accuracy, RTs and LRP onset latency in the mixed design. Consistent with these findings, smaller peak activation at fronto-central areas suggests that more selective inhibition is needed in a mixed design context. Despite a smaller activation, the topographical distribution is similar in both designs. These results indicate that the translation time between stimulus- and response codes are greater under the mixed instruction, while the similar LRP topography suggests that common neural structures underlie LRPs in response to both type of designs.
出处 《Journal of Behavioral and Brain Science》 2013年第1期150-155,共6页 行为与脑科学期刊(英文)
关键词 Lateralized READINESS POTENTIALS Mixed-Blocked Designs STIMULUS Response-Compatibility Reaction Times Lateralized Readiness Potentials Mixed-Blocked Designs Stimulus Response-Compatibility Reaction Times
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部