期刊文献+

Behavioral and Neurobiological Assessments of Predator-Based Fear Conditioning and Extinction

Behavioral and Neurobiological Assessments of Predator-Based Fear Conditioning and Extinction
下载PDF
导出
摘要 Shock, immobilization, and exposure to predator-related stimuli have all been used to study fear conditioning in rodents, but they have never been used in conjunction in a single study. Experiment 1 compared the effects of these three reinforcers, alone and in various combinations, on the expression of long-term conditioned fear memory and extinction in adult male rats. Whereas foot shock conditioning, alone, was rapidly extinguished;the combination of immobilization and cat exposure, or all 3 stimuli together, produced a significant increase in the magnitude of fear conditioning and greater resistance to extinction, which persisted for at least 5 weeks post-training (p < 0.05). Experiment 2 assessed the role of the hippocampus in predator-based context and cued fear conditioning. Pharmacological suppression of hippocampal activity during fear conditioning produced a selective impairment of contextual, but not cued, fear memory. Experiment 3 investigated the effects of sleep deprivation prior to fear conditioning on the expression of fear memory. This experiment demonstrated that pre-training sleep deprivation blocked the expression of contextual (hippocampal-dependent), but not cued (hippocampal-independent), fear memory. Overall, this series of experiments has extended the use of predator exposure in conjunction with conventional reinforcers, such as foot shock and immobilization, to advance our understanding of the neurobiology of traumatic memory. Shock, immobilization, and exposure to predator-related stimuli have all been used to study fear conditioning in rodents, but they have never been used in conjunction in a single study. Experiment 1 compared the effects of these three reinforcers, alone and in various combinations, on the expression of long-term conditioned fear memory and extinction in adult male rats. Whereas foot shock conditioning, alone, was rapidly extinguished;the combination of immobilization and cat exposure, or all 3 stimuli together, produced a significant increase in the magnitude of fear conditioning and greater resistance to extinction, which persisted for at least 5 weeks post-training (p < 0.05). Experiment 2 assessed the role of the hippocampus in predator-based context and cued fear conditioning. Pharmacological suppression of hippocampal activity during fear conditioning produced a selective impairment of contextual, but not cued, fear memory. Experiment 3 investigated the effects of sleep deprivation prior to fear conditioning on the expression of fear memory. This experiment demonstrated that pre-training sleep deprivation blocked the expression of contextual (hippocampal-dependent), but not cued (hippocampal-independent), fear memory. Overall, this series of experiments has extended the use of predator exposure in conjunction with conventional reinforcers, such as foot shock and immobilization, to advance our understanding of the neurobiology of traumatic memory.
作者 Joshua D. Halonen Phillip R. Zoladz Collin R. Park David M. Diamond Joshua D. Halonen;Phillip R. Zoladz;Collin R. Park;David M. Diamond(Department of Psychology, University of Tampa, Tampa, Florida, USA;Department of Psychology, University of South Florida, Tampa, Florida, USA;Department of Psychology, Sociology & Criminal Justice, Ohio Northern University, Ada, Ohio, USA;Department of Molecular Pharmacology & Physiology, University of South Florida, Tampa, Florida, USA;Center for Preclinical & Clinical Research on PTSD, University of South Florida, Tampa, Florida, USA)
出处 《Journal of Behavioral and Brain Science》 2016年第8期337-356,共20页 行为与脑科学期刊(英文)
关键词 Fear Conditioning Predator Exposure HIPPOCAMPUS Sleep Deprivation Fear Conditioning Predator Exposure Hippocampus Sleep Deprivation
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部