期刊文献+

Antibacterial Effects of Extracts of Two Types of Red Sea Algae

Antibacterial Effects of Extracts of Two Types of Red Sea Algae
下载PDF
导出
摘要 Introduction: Intestinal bacteria are exposed many external influences, including drugs, causing the emergence of strains resistant to the effects of antibiotics. Consequently, the discovery of new antibiotics that affect resistant strains is required. Marine algae offer a source of renewable natural compounds with antimicrobial effects. Therefore, the aim of this study was to detect some of these compounds and examine their impact on enteric bacteria. Methodology: Escherichia coli, Salmonella typhi, Shigella dysenteriae, Klebsiella pneumoniae, and Enterobacter aerogenes were tested with extracts of Turbinaria triquetra and Halimeda opuntia extracted with methanol, ethanol, petroleum ether, or dimethyl formamide solvents. We measured bacterial growth inhibition, the minimal inhibitory concentrations (MICs), and potassium leakage, and analyzed the bacterial cells with scanning electron microscopy and energy-dispersive X-ray spectroscopy. Results: The T. triquetra extract produced with methanol strongly affected the bacteria tested. When the results for T. triquetra and H. opuntia were compared with those of omacillin, the T. triquetra and H. opuntia extracts in most solvents were more effective than the antibiotic. Differences in the bacterial growth inhibition and MICs depended on the type of alga and the solvent used. At the end of the incubation period, potassium leakage had increased by 62.98% for E. coli, 61.24% for S. typhi, 61.32% for S. dysenteriae, 64.02% for K. pneumoniae, and 63.10% for E. aerogenes when treated T. triquetra. Conclusion: Turbinaria triquetra extracted with methanol strongly affected the growth of the bacteria tested. Therefore, it is a potential source of natural antibacterial compounds. Introduction: Intestinal bacteria are exposed many external influences, including drugs, causing the emergence of strains resistant to the effects of antibiotics. Consequently, the discovery of new antibiotics that affect resistant strains is required. Marine algae offer a source of renewable natural compounds with antimicrobial effects. Therefore, the aim of this study was to detect some of these compounds and examine their impact on enteric bacteria. Methodology: Escherichia coli, Salmonella typhi, Shigella dysenteriae, Klebsiella pneumoniae, and Enterobacter aerogenes were tested with extracts of Turbinaria triquetra and Halimeda opuntia extracted with methanol, ethanol, petroleum ether, or dimethyl formamide solvents. We measured bacterial growth inhibition, the minimal inhibitory concentrations (MICs), and potassium leakage, and analyzed the bacterial cells with scanning electron microscopy and energy-dispersive X-ray spectroscopy. Results: The T. triquetra extract produced with methanol strongly affected the bacteria tested. When the results for T. triquetra and H. opuntia were compared with those of omacillin, the T. triquetra and H. opuntia extracts in most solvents were more effective than the antibiotic. Differences in the bacterial growth inhibition and MICs depended on the type of alga and the solvent used. At the end of the incubation period, potassium leakage had increased by 62.98% for E. coli, 61.24% for S. typhi, 61.32% for S. dysenteriae, 64.02% for K. pneumoniae, and 63.10% for E. aerogenes when treated T. triquetra. Conclusion: Turbinaria triquetra extracted with methanol strongly affected the growth of the bacteria tested. Therefore, it is a potential source of natural antibacterial compounds.
出处 《Journal of Biosciences and Medicines》 2014年第2期74-82,共9页 生物科学与医学(英文)
关键词 Turbinaria triquetra HALIMEDA OPUNTIA ANTIBACTERIAL Solvents ENTERIC Bacteria Turbinaria triquetra Halimeda opuntia Antibacterial Solvents Enteric Bacteria
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部