摘要
Inadequate safety shoe wearing is thought to be responsible of many musculoskeletal disorders. A new concept of unstable footwear is proposed to reduce mechanical stresses during work. Major expectations argue for a better ankle dynamic behavior leading to an increased muscular activity. The aim of this study was to evaluate the variation of stance characteristics while walking on level ground as a function of the models of safety shoes. Twenty healthy males (aged 23.6 ± 7) were asked to make six gait cycles on a walking track while barefoot, shod with low cost safety footwear, high cost one, and equipped by Masa? Barefoot Technology shoes (the most unstable footwear). Stance phases (heel strike, flat foot and toe-off) have been normalized as percentages of the maximum value of ground reaction force recorded during each step. The highest significant percentages have been observed in Masa? Barefoot Technology shoes condition and only during heel strike (8% to 10.1% higher) and toe-off (10% to 11.3% higher). In contrast, the temporal durations of the three stance phases were not significantly different between the four conditions. The convexity of safety shoe induces less stability increasing the adaptation of the muscle activity of the wearer at heel-strike and toe-off in order to regain stable gait pattern.
Inadequate safety shoe wearing is thought to be responsible of many musculoskeletal disorders. A new concept of unstable footwear is proposed to reduce mechanical stresses during work. Major expectations argue for a better ankle dynamic behavior leading to an increased muscular activity. The aim of this study was to evaluate the variation of stance characteristics while walking on level ground as a function of the models of safety shoes. Twenty healthy males (aged 23.6 ± 7) were asked to make six gait cycles on a walking track while barefoot, shod with low cost safety footwear, high cost one, and equipped by Masa? Barefoot Technology shoes (the most unstable footwear). Stance phases (heel strike, flat foot and toe-off) have been normalized as percentages of the maximum value of ground reaction force recorded during each step. The highest significant percentages have been observed in Masa? Barefoot Technology shoes condition and only during heel strike (8% to 10.1% higher) and toe-off (10% to 11.3% higher). In contrast, the temporal durations of the three stance phases were not significantly different between the four conditions. The convexity of safety shoe induces less stability increasing the adaptation of the muscle activity of the wearer at heel-strike and toe-off in order to regain stable gait pattern.