摘要
Background: Alterations of trace elements, could induce metabolic disorders as they forthwith participating in the metabolic pathways and play different roles modulating it as well as many enzymes require trace elements for their activation and functions. Of these elements, selenium (Se), zinc (Zn), copper (Cu) and manganese (Mn) have been recognized as essentials for metabolism. Hyperglycemia and diabetes mellitus are important causes of mortality and morbidity worldwide, and their global prevalence are growing from 2.8% in 2000 projecting to be 4.4% in 2030. Diabetes is prevalent in Saudi Arabia with high incidence in urbanized areas and its prevalence is estimated to expand 3 times by 2030. Patients and Methods: In total, 75 diabetic women and 80 aberrantly healthy women were recruited. Clinical and familial history was recorded. Hair Se, Zn, Cu and Mn levels were analyzed as well as fasting blood sugar (FBS), glycated hemoglobin (HbA1c). Results: Our findings revealed a marked decrease of Zn and Mn levels in diabetic women hair compared to control group (p < 0.05, p <0.005 respectively). Otherwise, Se and Cu levels were significantly elevated in hair of diabetic patients (p < 0.005, p <0.05 respectively). Conclusion: Diabetes may disrupt the trace elements balance as well as their alterations can affect glucose metabolism and insulin action. Chronic hyperglycemia can cause disturbance of some trace elements which, in turn, can modulate glucose homeostasis. The metabolic dysregulation occurring in hyperglycemia may influence trace element status by increasing excretion, diminishing availability or redistribution of trace elements among different body pools. Hair trace elements can be useful long-term markers for metabolic disturbance;however, larger prospective studies are required to validate their role in diagnosis and follow up applications.
Background: Alterations of trace elements, could induce metabolic disorders as they forthwith participating in the metabolic pathways and play different roles modulating it as well as many enzymes require trace elements for their activation and functions. Of these elements, selenium (Se), zinc (Zn), copper (Cu) and manganese (Mn) have been recognized as essentials for metabolism. Hyperglycemia and diabetes mellitus are important causes of mortality and morbidity worldwide, and their global prevalence are growing from 2.8% in 2000 projecting to be 4.4% in 2030. Diabetes is prevalent in Saudi Arabia with high incidence in urbanized areas and its prevalence is estimated to expand 3 times by 2030. Patients and Methods: In total, 75 diabetic women and 80 aberrantly healthy women were recruited. Clinical and familial history was recorded. Hair Se, Zn, Cu and Mn levels were analyzed as well as fasting blood sugar (FBS), glycated hemoglobin (HbA1c). Results: Our findings revealed a marked decrease of Zn and Mn levels in diabetic women hair compared to control group (p < 0.05, p <0.005 respectively). Otherwise, Se and Cu levels were significantly elevated in hair of diabetic patients (p < 0.005, p <0.05 respectively). Conclusion: Diabetes may disrupt the trace elements balance as well as their alterations can affect glucose metabolism and insulin action. Chronic hyperglycemia can cause disturbance of some trace elements which, in turn, can modulate glucose homeostasis. The metabolic dysregulation occurring in hyperglycemia may influence trace element status by increasing excretion, diminishing availability or redistribution of trace elements among different body pools. Hair trace elements can be useful long-term markers for metabolic disturbance;however, larger prospective studies are required to validate their role in diagnosis and follow up applications.