期刊文献+

Theoretical Study of N-Methyl-3-Phenyl-3-(4-(Trifluoromethyl) Phenoxy) Propan as a Drug and Its Five Derivatives

Theoretical Study of N-Methyl-3-Phenyl-3-(4-(Trifluoromethyl) Phenoxy) Propan as a Drug and Its Five Derivatives
下载PDF
导出
摘要 Quantum chemical calculation was correlated with geometrical structure and total energy of fluoxetine and its five derivatives. Theoretical vibrational frequencies and geometric parameters (bond lengths and bond angles) have been calculated using ab initio (HF), density functional theory (B3LYP), semi-empirical (AM1, PM3) methods with different basis sets to design the fluoxetine drugs and its derivatives by a Gaussian 09 W program. Theoretical optimized geometric parameters and vibrational frequencies of fluoxetine have been compared with the corresponding five derivatives data. The highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) energies have been determined. The theoretical study includes the calculation of the thermodynamic properties of the drugs and its derivatives like zero-point energy, enthalpy, entropy, ionization energy, electron affinity to make a correlation between the gained results. The results of the four methods were not very clear, but an correlation between the dipole moment (potential character), static distribution (an active site character) and HOMO-LUMO energies (energy for electron transfer) shows that the patent 1.5 was important derivatives as a recommended drug relative to fluoxetine drug. Quantum chemical calculation was correlated with geometrical structure and total energy of fluoxetine and its five derivatives. Theoretical vibrational frequencies and geometric parameters (bond lengths and bond angles) have been calculated using ab initio (HF), density functional theory (B3LYP), semi-empirical (AM1, PM3) methods with different basis sets to design the fluoxetine drugs and its derivatives by a Gaussian 09 W program. Theoretical optimized geometric parameters and vibrational frequencies of fluoxetine have been compared with the corresponding five derivatives data. The highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) energies have been determined. The theoretical study includes the calculation of the thermodynamic properties of the drugs and its derivatives like zero-point energy, enthalpy, entropy, ionization energy, electron affinity to make a correlation between the gained results. The results of the four methods were not very clear, but an correlation between the dipole moment (potential character), static distribution (an active site character) and HOMO-LUMO energies (energy for electron transfer) shows that the patent 1.5 was important derivatives as a recommended drug relative to fluoxetine drug.
机构地区 Chemistry Department
出处 《Journal of Biosciences and Medicines》 2018年第8期80-98,共19页 生物科学与医学(英文)
关键词 FLUOXETINE AM1 PM3 DFT and HF: Thermodynamic Properties Fluoxetine AM1 PM3 DFT and HF: Thermodynamic Properties
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部