期刊文献+

Enhanced Sporicidal Activity of Alcohol and Epigallocatechin-Palmitate-Based Hand Hygiene Formulations Comprised of Plant-Derived Compounds

Enhanced Sporicidal Activity of Alcohol and Epigallocatechin-Palmitate-Based Hand Hygiene Formulations Comprised of Plant-Derived Compounds
下载PDF
导出
摘要 <span style="font-family:'';font-size:10pt;"><span style="font-size:12px;font-family:Verdana;">Pathogenic spore-forming bacteria pose high risks to healthcare settings, as well as in the food and beverage industries. We reported recently that novel alcohol-based formulations containing plant-derived compounds, including epigallocatechin-3-gallate-palmitate (EGCG-P), a green tea polyphenol ester, provide > 99.99% inactivation of bacterial spores within 60 sec. Based on recently published data from our group and others, we hypothesize that a combination of EGCG-P and alcohol formulated with other plant-derived ingredients would achieve high sporicidal efficacy against a wide spectrum of bacterial spores and can provide novel hand hygiene methods against bacterial spores without toxicity. The objectives of the current study were to optimize </span><span style="font-size:12px;font-family:Verdana;">two novel formulations with combinations of glycerol, citric acid, and EGCG-P</span><span style="font-size:12px;font-family:Verdana;"> to increase sporicidal activity and explore the rapid inactivation mechanisms and suitability for sporicidal products with broad-spectrum activities against aerobic and anaerobic bacterial spores. Methods included suspension testing of two formulations against spores from </span><i><span style="font-size:12px;font-family:Verdana;">Bacillus cereus</span></i><span style="font-size:12px;font-family:Verdana;"> and </span><i><span style="font-size:12px;font-family:Verdana;">Clostridium sporogenes</span></i><span style="font-size:12px;font-family:Verdana;">, quantification of spore germination, and scanning electron microscopy. The results demonstrated that these novel formulations were able to reduce spore germination by >99.999% after 30 sec exposure in </span><span style="font-size:12px;font-family:Verdana;">suspension tests, and rapidly caused physical damage to the spores. Additional</span></span><span style="font-family:'';font-size:10pt;"> </span><span style="line-height:1.5;font-family:Verdana;">studies</span><span style="font-family:'';font-size:10pt;"> </span><span style="line-height:1.5;font-family:Verdana;">are </span><span style="line-height:1.5;font-family:Verdana;">warranted to determine the suitability of the novel formulations for future hand hygiene use. <span style="font-family:'';font-size:10pt;"><span style="font-size:12px;font-family:Verdana;">Pathogenic spore-forming bacteria pose high risks to healthcare settings, as well as in the food and beverage industries. We reported recently that novel alcohol-based formulations containing plant-derived compounds, including epigallocatechin-3-gallate-palmitate (EGCG-P), a green tea polyphenol ester, provide > 99.99% inactivation of bacterial spores within 60 sec. Based on recently published data from our group and others, we hypothesize that a combination of EGCG-P and alcohol formulated with other plant-derived ingredients would achieve high sporicidal efficacy against a wide spectrum of bacterial spores and can provide novel hand hygiene methods against bacterial spores without toxicity. The objectives of the current study were to optimize </span><span style="font-size:12px;font-family:Verdana;">two novel formulations with combinations of glycerol, citric acid, and EGCG-P</span><span style="font-size:12px;font-family:Verdana;"> to increase sporicidal activity and explore the rapid inactivation mechanisms and suitability for sporicidal products with broad-spectrum activities against aerobic and anaerobic bacterial spores. Methods included suspension testing of two formulations against spores from </span><i><span style="font-size:12px;font-family:Verdana;">Bacillus cereus</span></i><span style="font-size:12px;font-family:Verdana;"> and </span><i><span style="font-size:12px;font-family:Verdana;">Clostridium sporogenes</span></i><span style="font-size:12px;font-family:Verdana;">, quantification of spore germination, and scanning electron microscopy. The results demonstrated that these novel formulations were able to reduce spore germination by >99.999% after 30 sec exposure in </span><span style="font-size:12px;font-family:Verdana;">suspension tests, and rapidly caused physical damage to the spores. Additional</span></span><span style="font-family:'';font-size:10pt;"> </span><span style="line-height:1.5;font-family:Verdana;">studies</span><span style="font-family:'';font-size:10pt;"> </span><span style="line-height:1.5;font-family:Verdana;">are </span><span style="line-height:1.5;font-family:Verdana;">warranted to determine the suitability of the novel formulations for future hand hygiene use.
作者 Tinchun Chu Lee H. Lee Ayuni Yussof Sabrina Lopez Gabriela Herrera Priscilla Luna Mahfuza Uddin Laying Wu John A. Murzaku Douglas Dickinson Stephen Hsu Tinchun Chu;Lee H. Lee;Ayuni Yussof;Sabrina Lopez;Gabriela Herrera;Priscilla Luna;Mahfuza Uddin;Laying Wu;John A. Murzaku;Douglas Dickinson;Stephen Hsu(Department of Biological Sciences, Seton Hall University, South Orange, NJ, USA;Department of Biology, Montclair State University, Montclair, NJ, USA;Microscopy and Microanalysis Research Laboratory, Montclair State University, Montclair, NJ, USA;Department of Mathematics and Computer Science, Seton Hall University, South Orange, NJ, USA;Camellix Research Laboratory, Augusta, GA, USA;Department of Oral Biology & Diagnostic Sciences, Augusta University, Augusta, GA, USA)
出处 《Journal of Biosciences and Medicines》 2020年第6期89-99,共11页 生物科学与医学(英文)
关键词 ALCOHOL Hand Hygiene Sporicidal Bacterial Spores Plant-Derived Compounds Alcohol Hand Hygiene Sporicidal Bacterial Spores Plant-Derived Compounds
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部