期刊文献+

The Molecular Mechanism of Xinyi San for the Treatment of Senile Rhinitis Based on Network Pharmacology

The Molecular Mechanism of Xinyi San for the Treatment of Senile Rhinitis Based on Network Pharmacology
下载PDF
导出
摘要 Objective: To study the molecular mechanism of Xinyi San for the treatment of senile rhinitis by applying network pharmacological analysis technology. Methods: The effective components and corresponding targets of Xinyi San were collected by TCMSP. The targets of senile rhinitis were collected by the Genecards database. The potential target of Xinyi San in the treatment of senile rhinitis was obtained by Venn analysis. Cytoscape 3.7.2 the software constructs the relationship network model of “disease-single drug-active ingredient-action target”. Protein protein interaction (PPI) network was constructed by using a string database. R4.1.1 software was used for GO function enrichment analysis and KEGG pathway enrichment analysis. Results: In this study, we obtained 158 active ingredients, 40 potential therapeutic targets, 74 GO projects, and 99 pathways. Major pathways include Lipid and atherosclerosis, Chemical carcinogenesis-receptor activation, PI3K-Akt signaling pathway, AGE-RAGE signaling pathway in diabetic complications, Pathways of neurodegeneration-multiple diseases, etc. Conclusion: Xinyi San has the characteristics of multi-component, multi-target, and multi-channel in the treatment of senile rhinitis. This study provides a basis for the in-depth study of Xinyi San. Objective: To study the molecular mechanism of Xinyi San for the treatment of senile rhinitis by applying network pharmacological analysis technology. Methods: The effective components and corresponding targets of Xinyi San were collected by TCMSP. The targets of senile rhinitis were collected by the Genecards database. The potential target of Xinyi San in the treatment of senile rhinitis was obtained by Venn analysis. Cytoscape 3.7.2 the software constructs the relationship network model of “disease-single drug-active ingredient-action target”. Protein protein interaction (PPI) network was constructed by using a string database. R4.1.1 software was used for GO function enrichment analysis and KEGG pathway enrichment analysis. Results: In this study, we obtained 158 active ingredients, 40 potential therapeutic targets, 74 GO projects, and 99 pathways. Major pathways include Lipid and atherosclerosis, Chemical carcinogenesis-receptor activation, PI3K-Akt signaling pathway, AGE-RAGE signaling pathway in diabetic complications, Pathways of neurodegeneration-multiple diseases, etc. Conclusion: Xinyi San has the characteristics of multi-component, multi-target, and multi-channel in the treatment of senile rhinitis. This study provides a basis for the in-depth study of Xinyi San.
作者 Jing Xing Lingdi Wang Jing Xing;Lingdi Wang(Department of Pharmacy, Affiliated Hospital of Chengde Medical College, Chengde, China)
机构地区 Department of Pharmacy
出处 《Journal of Biosciences and Medicines》 CAS 2022年第8期110-121,共12页 生物科学与医学(英文)
关键词 Network Pharmacology Senile Rhinitis Xinyi San Molecular Mechanism Network Pharmacology Senile Rhinitis Xinyi San Molecular Mechanism
  • 相关文献

参考文献8

二级参考文献86

共引文献466

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部