期刊文献+

Cholesterol and Sericin as First Aid for Damaged Cells

Cholesterol and Sericin as First Aid for Damaged Cells
下载PDF
导出
摘要 Cells are surrounded by a double-layered phospholipid cell membrane responsible for the isolation of intracellular contents, active regulation of uptake from the extracellular environment, and intercellular connection and communication. These cell membranes must be intact and functionally active for cell survival and biological functioning. Compromised damage repair mechanisms usually result in impaired cellular homeostasis, leading to early or late problems. Chronic myopathies, certain myocardial diseases, aging, and acute or chronic neurodegenerative diseases (like Parkinson and Alzheimer) are directly related to cell membrane damage. This study examined the effect of a cholesterol-loaded nanoparticle (methyl-beta cyclodextrin) or the silk protein sericin on cell membrane and DNA integrity and cell viability in an in vitro cell damage model (frozen-thawed rabbit sperm cells). The cells were stored in liquid nitrogen (-196°C), thawed in small batches, and treated with cholesterol-loaded cyclodextrin or sericin before incubation at 35°C for 4 hours. Cell membrane integrity, DNA damage, and viability rates were assessed immediately after thawing and after the incubation period. The administration of sericin and cholesterol in a cell damage model increased cell survival and reduced DNA damage over a 4-hour post-thaw incubation period, suggesting their potential use as a “first aid” intervention at the cellular level. Cells are surrounded by a double-layered phospholipid cell membrane responsible for the isolation of intracellular contents, active regulation of uptake from the extracellular environment, and intercellular connection and communication. These cell membranes must be intact and functionally active for cell survival and biological functioning. Compromised damage repair mechanisms usually result in impaired cellular homeostasis, leading to early or late problems. Chronic myopathies, certain myocardial diseases, aging, and acute or chronic neurodegenerative diseases (like Parkinson and Alzheimer) are directly related to cell membrane damage. This study examined the effect of a cholesterol-loaded nanoparticle (methyl-beta cyclodextrin) or the silk protein sericin on cell membrane and DNA integrity and cell viability in an in vitro cell damage model (frozen-thawed rabbit sperm cells). The cells were stored in liquid nitrogen (-196°C), thawed in small batches, and treated with cholesterol-loaded cyclodextrin or sericin before incubation at 35°C for 4 hours. Cell membrane integrity, DNA damage, and viability rates were assessed immediately after thawing and after the incubation period. The administration of sericin and cholesterol in a cell damage model increased cell survival and reduced DNA damage over a 4-hour post-thaw incubation period, suggesting their potential use as a “first aid” intervention at the cellular level.
作者 Denız Aksoy Doga Naz Turan Zeki Berkay Bayraktar Denız Aksoy;Doga Naz Turan;Zeki Berkay Bayraktar(Basak College Anatolian High School, Aydin, Turkey;Bornova Anatolian High School, Bornova, Turkey;Izmir Science High School, Izmir, Turkey)
出处 《Journal of Biosciences and Medicines》 2024年第4期79-88,共10页 生物科学与医学(英文)
关键词 Cell Membrane DNA SURVIVAL DAMAGE CHOLESTEROL SERICIN SPERMATOZOA Cell Membrane DNA Survival Damage Cholesterol Sericin Spermatozoa
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部