摘要
Purine nucleotides are crucial for the effective operation of cell membrane proteins maintaining the neurotransmitter responses of 5-HT. Major protein targets in the treatment of depression include SERT, N/K ATPase and GPCR. Each protein target is responsive to a specific complement of drugs: antidepressants (SERT), lithium and cardiogenic steroids (N/K ATPase), 5-HT receptor ligands (GPCR). Computational software is useful for comparing molecular similarity within ligand-ligand and ligand-nucleotide structures. Previous studies demonstrate that GPCR ligands of different pharmacologic classes display relative molecular similarity to nucleotide structures. The current study applies this methodology to compound structures modulating SERT and N/K ATPase receptors. Minimum energy conformers of SERT antagonists demonstrate relative molecular similarity to the structural template of GTP nucleotide. GTP template fits of 5-HT and psilocin are similar, whereas a SERT-like fit is one of several for the ketamine structure. Endogenous and pharmaceutical modulators of Na/K ATPase relate to adenine nucleotide. The fits of cardiogenic steroids to a cGMP template demonstrate similarities and differences between compounds. Relative molecular similarity within the structures of hormones, drugs and nucleotides has implications for neurotransmitter transport and cell signal transduction processes.
Purine nucleotides are crucial for the effective operation of cell membrane proteins maintaining the neurotransmitter responses of 5-HT. Major protein targets in the treatment of depression include SERT, N/K ATPase and GPCR. Each protein target is responsive to a specific complement of drugs: antidepressants (SERT), lithium and cardiogenic steroids (N/K ATPase), 5-HT receptor ligands (GPCR). Computational software is useful for comparing molecular similarity within ligand-ligand and ligand-nucleotide structures. Previous studies demonstrate that GPCR ligands of different pharmacologic classes display relative molecular similarity to nucleotide structures. The current study applies this methodology to compound structures modulating SERT and N/K ATPase receptors. Minimum energy conformers of SERT antagonists demonstrate relative molecular similarity to the structural template of GTP nucleotide. GTP template fits of 5-HT and psilocin are similar, whereas a SERT-like fit is one of several for the ketamine structure. Endogenous and pharmaceutical modulators of Na/K ATPase relate to adenine nucleotide. The fits of cardiogenic steroids to a cGMP template demonstrate similarities and differences between compounds. Relative molecular similarity within the structures of hormones, drugs and nucleotides has implications for neurotransmitter transport and cell signal transduction processes.
作者
Wynford Robert Williams
Wynford Robert Williams(Faculty of Life Sciences & Education, University of South Wales, Cardiff, UK)