期刊文献+

Identification of a 12-Gene Signature for Lung Cancer Prognosis through Machine Learning

Identification of a 12-Gene Signature for Lung Cancer Prognosis through Machine Learning
下载PDF
导出
摘要 Personalized medicine is critical for lung cancer treatment. Different gene signatures that can classify lung cancer patients as high- or low-risk for cancer recurrence have been found. The aim of this study is to identify a novel gene signature that has higher recurrence risk prediction accuracy for non-small cell lung cancer patients than previous re-search, which can clearly differentiate the high- and low-risk groups. To accomplish this we employed an ensemble of feature selection algorithms, an ensemble of classification algorithms, and a genetic algorithm, an evolutionary search algorithm. Compared to one previous study, our 12-gene signature more accurately classifies the patients in the training set (n = 256), 57.32% compared to 50.78%, as well as in the two test sets (n = 104 and n = 82), 67.07% compared to 54.9% and 57.32% compared to 54.8%;where the prediction accuracy was determined by the average of the four classifiers. Through Kaplan-Meier analysis on high- and low-risk patients our 12-gene signature revealed statistically significant risk differentiation in each data set: the training set had a p-value less than 0.001 (log-rank) and the two test sets had (log-rank) p-values less than 0.05. Analysis of the posterior probabilities revealed strong correlation between 5-year survival and the 12-gene signature. Also, functional pathway analysis uncovered associations between the 12-gene signature and cancer causing genes in the literature. Personalized medicine is critical for lung cancer treatment. Different gene signatures that can classify lung cancer patients as high- or low-risk for cancer recurrence have been found. The aim of this study is to identify a novel gene signature that has higher recurrence risk prediction accuracy for non-small cell lung cancer patients than previous re-search, which can clearly differentiate the high- and low-risk groups. To accomplish this we employed an ensemble of feature selection algorithms, an ensemble of classification algorithms, and a genetic algorithm, an evolutionary search algorithm. Compared to one previous study, our 12-gene signature more accurately classifies the patients in the training set (n = 256), 57.32% compared to 50.78%, as well as in the two test sets (n = 104 and n = 82), 67.07% compared to 54.9% and 57.32% compared to 54.8%;where the prediction accuracy was determined by the average of the four classifiers. Through Kaplan-Meier analysis on high- and low-risk patients our 12-gene signature revealed statistically significant risk differentiation in each data set: the training set had a p-value less than 0.001 (log-rank) and the two test sets had (log-rank) p-values less than 0.05. Analysis of the posterior probabilities revealed strong correlation between 5-year survival and the 12-gene signature. Also, functional pathway analysis uncovered associations between the 12-gene signature and cancer causing genes in the literature.
作者 Erin Bard Wei Hu
机构地区 不详
出处 《Journal of Cancer Therapy》 2011年第2期148-156,共9页 癌症治疗(英文)
关键词 BIOINFORMATICS Classification Feature Selection Gene SIGNATURE Kaplan-Meier Analysis LUNG Cancer Machine Learning PERSONALIZED Medicine. Bioinformatics Classification Feature Selection Gene Signature Kaplan-Meier Analysis Lung Cancer Machine Learning Personalized Medicine.
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部