期刊文献+

Microvesicles in Gliomas and Medulloblastomas: An Overview

Microvesicles in Gliomas and Medulloblastomas: An Overview
下载PDF
导出
摘要 Microvesicles (MVs) or shedding membrane vesicles have recently been described as a novel model of intercellular communication. Previously, MVs were considered as unnecessary or secreted cellular debris, but MVs have lately been described as having roles in a variety of biological functions, such as cell homeostasis and the cellular processes involved in the oncogenesis of many types of tumors. Carrying several key molecules that contribute to tumor development and progression, similar to mRNAs, microRNAs and other non-coding RNAs, DNA and even small proteins, MVs can be considered as a ubiquitous form of novel cell communication that is present in most somatic cells. Although tumor-derived MVs have been demonstrated in different types of cancers, the literature data on MVs in primary central nervous system (CNS) tumors are relatively scarce. In this review, we address the involvement of MVs in diffuse astrocytomas, particularly glioblastomas, as well as oligodendrogliomas and medulloblastomas. We placed particular focus on the cellular crosstalk between tumor and “normal” cells, the putative mechanisms how the tumor microenvironment is modulated and the spread of aggressive phenotypes. Additionally, a better understanding of the participation of tumor-derived MVs in the regulation of key cancer pathways will offer new insights into tumor pathogenesis and the mechanisms of multidrug resistance, and may help to develop new strategies for novel therapies against these infiltrative CNS tumors. Microvesicles (MVs) or shedding membrane vesicles have recently been described as a novel model of intercellular communication. Previously, MVs were considered as unnecessary or secreted cellular debris, but MVs have lately been described as having roles in a variety of biological functions, such as cell homeostasis and the cellular processes involved in the oncogenesis of many types of tumors. Carrying several key molecules that contribute to tumor development and progression, similar to mRNAs, microRNAs and other non-coding RNAs, DNA and even small proteins, MVs can be considered as a ubiquitous form of novel cell communication that is present in most somatic cells. Although tumor-derived MVs have been demonstrated in different types of cancers, the literature data on MVs in primary central nervous system (CNS) tumors are relatively scarce. In this review, we address the involvement of MVs in diffuse astrocytomas, particularly glioblastomas, as well as oligodendrogliomas and medulloblastomas. We placed particular focus on the cellular crosstalk between tumor and “normal” cells, the putative mechanisms how the tumor microenvironment is modulated and the spread of aggressive phenotypes. Additionally, a better understanding of the participation of tumor-derived MVs in the regulation of key cancer pathways will offer new insights into tumor pathogenesis and the mechanisms of multidrug resistance, and may help to develop new strategies for novel therapies against these infiltrative CNS tumors.
出处 《Journal of Cancer Therapy》 2014年第2期182-191,共10页 癌症治疗(英文)
关键词 MICROVESICLES Exosomes MICROPARTICLES GLIOMAS GLIOBLASTOMAS MEDULLOBLASTOMAS OLIGODENDROGLIOMAS Review Microvesicles Exosomes Microparticles Gliomas Glioblastomas Medulloblastomas Oligodendrogliomas Review
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部