期刊文献+

Disulfiram’s Antineoplastic Effects on Ovarian Cancer

Disulfiram’s Antineoplastic Effects on Ovarian Cancer
下载PDF
导出
摘要 Objective: Aldehyde dehydrogenase (ALDH) enzymatic activity identifies ovarian cancer stem-like cells. We investigated the antineoplastic activity of the ALDH inhibitor Disulfiram on bulk ovarian cancer cells and CD133+/ALDH+ cancer stem-like cells. Study Design: Ovarian cancer cell lines, human ovarian surface epithelial cells, and mesenchymal stem cells were treated with increasing concentrations of Disulfiram and/or Cisplatin in vitro. Treated cells were assessed for viability or FACS-analyzed for either percentage of ovarian cancer stem-like cells or induction of apoptosis. Disulfiram’s impact on cancer stem-like cells was tested in vitro using tumor sphere formation assays and in vivo using tumor initiation assays with in vitro-treated A2780 cells in NSG mice. Finally, Disulfiram’s in vivo activity was assessed versus CD133+/ALDH+ cell-initiated tumor xenografts. Results: Disulfiram demonstrated antineoplastic activity against multiple ovarian cancer cell lines. While Disulfiram had limited in vitro toxicity against human ovarian surface epithelial cells or mesenchymal stem cells (IC50 of ~15 μM and >30 μM, respectively), its antineoplastic activity against cell lines was comparable to Cisplatin (IC50 ~1.5 μM). Disulfiram-mediated cell death was due, at least in part, to induction of apoptosis. Disulfiram activity was additive with chemotherapy. Disulfiram demonstrated selective depletion of CD44+ cells but not the CD133+ cancer stem-like cells. Disulfiram had no therapeutic impact on tumor initiation studies or in vivo therapy of whole cell line or stem cell-initiated tumor xenografts. Conclusions: In biologically relevant concentrations, Disulfiram has clear antineoplastic activity against ovarian cancer cells in vitro. Disulfiram selectively depleted CD44+ but not CD133+ ovarian cancer stem-like cells in vitro. However, Disulfiram had no significant activity in vivo. Thus, improved and more selective ALDH inhibitors may be required to target ovarian cancer stem cells. Objective: Aldehyde dehydrogenase (ALDH) enzymatic activity identifies ovarian cancer stem-like cells. We investigated the antineoplastic activity of the ALDH inhibitor Disulfiram on bulk ovarian cancer cells and CD133+/ALDH+ cancer stem-like cells. Study Design: Ovarian cancer cell lines, human ovarian surface epithelial cells, and mesenchymal stem cells were treated with increasing concentrations of Disulfiram and/or Cisplatin in vitro. Treated cells were assessed for viability or FACS-analyzed for either percentage of ovarian cancer stem-like cells or induction of apoptosis. Disulfiram’s impact on cancer stem-like cells was tested in vitro using tumor sphere formation assays and in vivo using tumor initiation assays with in vitro-treated A2780 cells in NSG mice. Finally, Disulfiram’s in vivo activity was assessed versus CD133+/ALDH+ cell-initiated tumor xenografts. Results: Disulfiram demonstrated antineoplastic activity against multiple ovarian cancer cell lines. While Disulfiram had limited in vitro toxicity against human ovarian surface epithelial cells or mesenchymal stem cells (IC50 of ~15 μM and >30 μM, respectively), its antineoplastic activity against cell lines was comparable to Cisplatin (IC50 ~1.5 μM). Disulfiram-mediated cell death was due, at least in part, to induction of apoptosis. Disulfiram activity was additive with chemotherapy. Disulfiram demonstrated selective depletion of CD44+ cells but not the CD133+ cancer stem-like cells. Disulfiram had no therapeutic impact on tumor initiation studies or in vivo therapy of whole cell line or stem cell-initiated tumor xenografts. Conclusions: In biologically relevant concentrations, Disulfiram has clear antineoplastic activity against ovarian cancer cells in vitro. Disulfiram selectively depleted CD44+ but not CD133+ ovarian cancer stem-like cells in vitro. However, Disulfiram had no significant activity in vivo. Thus, improved and more selective ALDH inhibitors may be required to target ovarian cancer stem cells.
出处 《Journal of Cancer Therapy》 2015年第14期1196-1205,共10页 癌症治疗(英文)
关键词 ANTINEOPLASTIC ALDH DISULFIRAM NSG MICE OVARIAN Cancer Stem Cells Antineoplastic ALDH Disulfiram NSG Mice Ovarian Cancer Stem Cells
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部