期刊文献+

The Effect of Micro-Pulsatile Electrical and Ultrasound Stimulation on Cellular Biosynthetic Activities Such as Cellular Proliferation, Endogenous Nitrogen Oxide and Collagen Synthesis

The Effect of Micro-Pulsatile Electrical and Ultrasound Stimulation on Cellular Biosynthetic Activities Such as Cellular Proliferation, Endogenous Nitrogen Oxide and Collagen Synthesis
下载PDF
导出
摘要 The skin barrier poses an ongoing challenge for the cosmetics industry. Its penetration, by non-invasive means, can readily be achieved with currents and ultrasound or radiofrequency devices through electroporation, sonophoresis, iontophoresis or cavitation. When several types of energy are applied simultaneously, we expect the effects to be magnified and all the more effective. Although the mechanism of action of each technology on the skin is not entirely controlled, and is even less so when multiple technologies are applied concurrently, some studies demonstrate that nitric oxide (NO) plays a pivotal role in skin wound-healing and regeneration. With regard to wound healing, one of the key functions of NO appears to be its permissive effect on keratinocyte and fibroblast proliferation, which helps promote wound re-epithelialization. The objective of the actual research is to gain an in-depth understanding of the mechanisms generated by NO through the application of a specific combination of technologies. The skin barrier poses an ongoing challenge for the cosmetics industry. Its penetration, by non-invasive means, can readily be achieved with currents and ultrasound or radiofrequency devices through electroporation, sonophoresis, iontophoresis or cavitation. When several types of energy are applied simultaneously, we expect the effects to be magnified and all the more effective. Although the mechanism of action of each technology on the skin is not entirely controlled, and is even less so when multiple technologies are applied concurrently, some studies demonstrate that nitric oxide (NO) plays a pivotal role in skin wound-healing and regeneration. With regard to wound healing, one of the key functions of NO appears to be its permissive effect on keratinocyte and fibroblast proliferation, which helps promote wound re-epithelialization. The objective of the actual research is to gain an in-depth understanding of the mechanisms generated by NO through the application of a specific combination of technologies.
作者 Doris-Antoinette Mbeh Insaf Hadjab Mihaela-Elena Ungur L’Hocine Yahia Doris-Antoinette Mbeh;Insaf Hadjab;Mihaela-Elena Ungur;L’Hocine Yahia(Laboratory of Innovation and Analysis of Bioperformance (LIAB), Mechanical/Biomedical Engineering Department, Polytechnique Montréal, Montreal, Canada)
出处 《Journal of Cosmetics, Dermatological Sciences and Applications》 2016年第1期41-47,共7页 化妆品、皮肤病及应用期刊(英文)
关键词 Collagen FIBROBLASTS NO Aesthetic Technologies ULTRASOUNDS Electric Current Collagen Fibroblasts NO Aesthetic Technologies Ultrasounds Electric Current
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部