摘要
We describe the design, modeling and production of a 3D printed manifold for attaching multiple respiration masks to a single ventilator machine. During a disaster surge this would allow up to four masks to be connected to a single ventilator source. In a disaster which involves high numbers of patients with lung damage, simultaneous respirator support may be required;however, the number of patients may quickly outnumber the available respirator machines. We explore the use of a rapid and low cost 3D printing method referred to as Fused Filament Deposition (FFD) for creation of a four-port ventilator manifold. This 3D printing method deposits layers of melted ABS plastic filament in a fine “stream” onto successive layers in order to form a three dimensional object. The standard file format for this object (manifold attachment) can be made globally available through the internet. It can be “printed” anywhere and anytime it is needed as a three dimensional object at extremely low cost (under two dollars per unit) and since the digital file that represents the object is modifiable, “derivative” versions can be redesigned to suit a broad range of potential applications, especially in areas with limited healthcare resources.
We describe the design, modeling and production of a 3D printed manifold for attaching multiple respiration masks to a single ventilator machine. During a disaster surge this would allow up to four masks to be connected to a single ventilator source. In a disaster which involves high numbers of patients with lung damage, simultaneous respirator support may be required;however, the number of patients may quickly outnumber the available respirator machines. We explore the use of a rapid and low cost 3D printing method referred to as Fused Filament Deposition (FFD) for creation of a four-port ventilator manifold. This 3D printing method deposits layers of melted ABS plastic filament in a fine “stream” onto successive layers in order to form a three dimensional object. The standard file format for this object (manifold attachment) can be made globally available through the internet. It can be “printed” anywhere and anytime it is needed as a three dimensional object at extremely low cost (under two dollars per unit) and since the digital file that represents the object is modifiable, “derivative” versions can be redesigned to suit a broad range of potential applications, especially in areas with limited healthcare resources.