期刊文献+

Hyperspectral Imaging Based on Compressive Sensing: Determining Cancer Margins in Human Pancreatic Tissue <i>ex Vivo</i>, a Pilot Study

Hyperspectral Imaging Based on Compressive Sensing: Determining Cancer Margins in Human Pancreatic Tissue <i>ex Vivo</i>, a Pilot Study
下载PDF
导出
摘要 Cancer is the second-leading cause of death in the United State and surgery remains the primary treatment for most solid mass tumors. However, accurately identifying tumor margins in real-time remains a challenge. In this study, the design and testing of hyperspectral imaging (HSI) system based on a single-pixel camera engine is discussed. The primary advantage of a single pixel architecture over traditional scanning HSI techniques is its high sensitivity and potential to function at low light levels. The objective for the imaging system described here is to detect changes in the reflectance spectra of tissue and to use these differences to delineate tumor margins. This paper presents the results of a 19-patient pilot study that assesses the ability of the HSI system to use reflectance imaging to delineate adenocarcinoma tumor margins in human pancreatic tissue imaged<em> ex vivo</em>. Pancreatic tissue excised during pancreatectomy was imaged immediately after being sent to the pathology lab. A pathologist sectioned the tissue and placed samples into standard tissue embedding cassettes. These tissue samples were then imaged using the HSI system. After imaging, the samples were returned to the pathologist for processing and analysis. The HSI was later compared to the histological analysis. The spectral angle mapping (SAM) and support vector machine (SVM) algorithms were used to classify pixels in the HSI images as healthy or unhealthy in order to delineate margins. Good agreement between margins determined via HSI (using both SAM and SVM) and histology/white light imaging was found. Cancer is the second-leading cause of death in the United State and surgery remains the primary treatment for most solid mass tumors. However, accurately identifying tumor margins in real-time remains a challenge. In this study, the design and testing of hyperspectral imaging (HSI) system based on a single-pixel camera engine is discussed. The primary advantage of a single pixel architecture over traditional scanning HSI techniques is its high sensitivity and potential to function at low light levels. The objective for the imaging system described here is to detect changes in the reflectance spectra of tissue and to use these differences to delineate tumor margins. This paper presents the results of a 19-patient pilot study that assesses the ability of the HSI system to use reflectance imaging to delineate adenocarcinoma tumor margins in human pancreatic tissue imaged<em> ex vivo</em>. Pancreatic tissue excised during pancreatectomy was imaged immediately after being sent to the pathology lab. A pathologist sectioned the tissue and placed samples into standard tissue embedding cassettes. These tissue samples were then imaged using the HSI system. After imaging, the samples were returned to the pathologist for processing and analysis. The HSI was later compared to the histological analysis. The spectral angle mapping (SAM) and support vector machine (SVM) algorithms were used to classify pixels in the HSI images as healthy or unhealthy in order to delineate margins. Good agreement between margins determined via HSI (using both SAM and SVM) and histology/white light imaging was found.
作者 Joseph Peller Cobey L. McGinnis Kyle J. Thompson Imran Siddiqui John Martinie David A. Iannitti Susan R. Trammell Joseph Peller;Cobey L. McGinnis;Kyle J. Thompson;Imran Siddiqui;John Martinie;David A. Iannitti;Susan R. Trammell(Department of Physics and Optical Science, University of North Carolina at Charlotte, Charlotte, USA;Carolinas Medical Center, Charlotte, USA)
出处 《Open Journal of Medical Imaging》 2021年第4期115-131,共17页 医学影像期刊(英文)
关键词 Hyperspectral Imaging Cancer Detection Reflectance Spectroscopy Single Pixel Camera Hyperspectral Imaging Cancer Detection Reflectance Spectroscopy Single Pixel Camera
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部