摘要
Soft tissues are important for aesthetic considerations in implant therapy. The purpose of this study was to investigate soft tissue augmentation by using porous poly-DL-lactic acid (PDLLA)shaped as a tablet, with a diameter of5.0 mmand a height of2.0 mm. Porous PDLLA was implanted between the periosteal and epithelial tissues in 25 rats that were sacrificed at 1, 2, 4, 12, and 24 weeks. The average height of the PDLLA scaffolds at approximately 24 weeks was 1.85 ±0.08 mm, and the molecular weight decreased with time. Sinusoidal capillaries at 1 week, connective tissues at 4 weeks, and necrotic tissues at 24 weeks were observed more than other periods. At 24 weeks, the connective tissue surviving in the pores was confirmed to contain blood vessels;therefore, blood vessels are considered to be critical for the survival of soft tissue in scaffold pores. In this study, PDLLA was found to be useful for soft tissue augmentation in the long term. Although the molecular weight of PDLLA decreased with time, the height of the PDLLA scaffolds was preserved. The connective tissue surviving in the pores of the scaffolds at 24 weeks were associated with blood vessels. Further studies are necessary to investigate the optimal scaffold shape and surface characteristics to improve the penetration of blood vessels.
Soft tissues are important for aesthetic considerations in implant therapy. The purpose of this study was to investigate soft tissue augmentation by using porous poly-DL-lactic acid (PDLLA)shaped as a tablet, with a diameter of5.0 mmand a height of2.0 mm. Porous PDLLA was implanted between the periosteal and epithelial tissues in 25 rats that were sacrificed at 1, 2, 4, 12, and 24 weeks. The average height of the PDLLA scaffolds at approximately 24 weeks was 1.85 ±0.08 mm, and the molecular weight decreased with time. Sinusoidal capillaries at 1 week, connective tissues at 4 weeks, and necrotic tissues at 24 weeks were observed more than other periods. At 24 weeks, the connective tissue surviving in the pores was confirmed to contain blood vessels;therefore, blood vessels are considered to be critical for the survival of soft tissue in scaffold pores. In this study, PDLLA was found to be useful for soft tissue augmentation in the long term. Although the molecular weight of PDLLA decreased with time, the height of the PDLLA scaffolds was preserved. The connective tissue surviving in the pores of the scaffolds at 24 weeks were associated with blood vessels. Further studies are necessary to investigate the optimal scaffold shape and surface characteristics to improve the penetration of blood vessels.