期刊文献+

Hypoxia-Mediated Upregulation of Semaphorin 3A during Pulp Revascularization

Hypoxia-Mediated Upregulation of Semaphorin 3A during Pulp Revascularization
下载PDF
导出
摘要 Semaphorin 3A could be involved in angiogenesis and also enhanced bone formation was investigated in many researches. In our current study, we firstly investigated that canal obliteration might be present in some regenerative endodontic procedures cases clinically. After the establishment of the model of apical periodontitis in the maxillary first molars of rats, pulp revascularization was performed in mesial root canal. Histological sections showed that most of the tissues growing into the root canal were not real pulp tissue, but cementoid, osteoid and periodontal-like membrane. Moreover, we detected that the expression of Semaphorin 3A increased in the mesial root canal. When we used CoCl<sub>2</sub> to induce hypoxic environment, the expression of genes and proteins, Hypoxia inducible factor-1α, Vascular endothelial growth factor, and Semaphorin 3A in dental pulp stem cells were both upregulated. In conclusion, hypoxia mediated the high expression of Semaphorin 3A in DPSC might be involved tissue regeneration during pulp vascularization. Semaphorin 3A could be involved in angiogenesis and also enhanced bone formation was investigated in many researches. In our current study, we firstly investigated that canal obliteration might be present in some regenerative endodontic procedures cases clinically. After the establishment of the model of apical periodontitis in the maxillary first molars of rats, pulp revascularization was performed in mesial root canal. Histological sections showed that most of the tissues growing into the root canal were not real pulp tissue, but cementoid, osteoid and periodontal-like membrane. Moreover, we detected that the expression of Semaphorin 3A increased in the mesial root canal. When we used CoCl<sub>2</sub> to induce hypoxic environment, the expression of genes and proteins, Hypoxia inducible factor-1α, Vascular endothelial growth factor, and Semaphorin 3A in dental pulp stem cells were both upregulated. In conclusion, hypoxia mediated the high expression of Semaphorin 3A in DPSC might be involved tissue regeneration during pulp vascularization.
作者 Wenjing Wang Hongyi Zhang Yi Liu Wenjing Wang;Hongyi Zhang;Yi Liu(Department of Stomatology, The First Affiliated Hospital of Yangtze University, Jingzhou, China)
出处 《Open Journal of Stomatology》 CAS 2022年第7期197-208,共12页 口腔学期刊(英文)
关键词 Dental Pulp Stem Cells HYPOXIA Pulp Revascularization Regenerative Endodontic Procedures Semaphorin 3A Dental Pulp Stem Cells Hypoxia Pulp Revascularization Regenerative Endodontic Procedures Semaphorin 3A
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部