期刊文献+

Production and Biochemestry-Molecular Analysis of Microbial Community Fermenting Whey as a Potential Probiotic for Use Animals

Production and Biochemestry-Molecular Analysis of Microbial Community Fermenting Whey as a Potential Probiotic for Use Animals
下载PDF
导出
摘要 The aims of this work were: To achieve a simple and low cost propagation of potential probiotic agents using plain whey as a culture medium, study the diversity of the members of the bacterial community (MC) in plain whey and to evaluate the probiotic capacity of this MC. After a systematic selection of agents according to their growing capacity in whey, the constituted MC was considered as a unit. Biochemical characterization of the lactic acid bacteria were performed using the API system. Molecular characterization of the lactic acid bacteria was realized using AFLPTM DNA-fingerprinting, partial 16S rDNA sequence analysis and PCR-denaturing gradient gel electrophoresis (PCR-DGGE). The physiological characterization of yeast was determined with the automated microplate method Allev/Biolomics and using yeast characterization system based on standard taxonomic criteria. The identification molecular was realized by PCR-fingerprinting. The resistance of MC to pH and bile salts were evaluated. The MC was composed of agents from different separated Dominium like Bacteria (Lactobacillum) and Eukaria (yeast). They are multispecies and also multistrain assuring high biodiversity. The MC grew at low pH and different concentrations bile salts. The aims of this work were: To achieve a simple and low cost propagation of potential probiotic agents using plain whey as a culture medium, study the diversity of the members of the bacterial community (MC) in plain whey and to evaluate the probiotic capacity of this MC. After a systematic selection of agents according to their growing capacity in whey, the constituted MC was considered as a unit. Biochemical characterization of the lactic acid bacteria were performed using the API system. Molecular characterization of the lactic acid bacteria was realized using AFLPTM DNA-fingerprinting, partial 16S rDNA sequence analysis and PCR-denaturing gradient gel electrophoresis (PCR-DGGE). The physiological characterization of yeast was determined with the automated microplate method Allev/Biolomics and using yeast characterization system based on standard taxonomic criteria. The identification molecular was realized by PCR-fingerprinting. The resistance of MC to pH and bile salts were evaluated. The MC was composed of agents from different separated Dominium like Bacteria (Lactobacillum) and Eukaria (yeast). They are multispecies and also multistrain assuring high biodiversity. The MC grew at low pH and different concentrations bile salts.
出处 《Open Journal of Veterinary Medicine》 2012年第3期104-112,共9页 兽医学(英文)
关键词 Probiotic MULTISPECIES Multistrain PLAIN WHEY Probiotic Multispecies Multistrain Plain Whey
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部