期刊文献+

Humane Non-Human Primate Model of Traumatic Spinal Cord Injury: Quantitative Analysis of Electromyographic Data

Humane Non-Human Primate Model of Traumatic Spinal Cord Injury: Quantitative Analysis of Electromyographic Data
下载PDF
导出
摘要 A valid non human primate model of traumatic spinal cord injury (TSCI) is essential to evaluate and develop new treatments. In previous experiments, it has been demonstrated that a transmitter can be implanted in the macaque fasicularis monkey that measures electromyographic data from the musculature of the tail. As well, previous experiments have demonstrated that selective lesions can be created in the lower thoracic spinal cord that does not cause limb weakness and/or bowel dysfunction. The histopathological features of these lesions appear similar to human TSCI. This paper describes a method by which the EMG data can be transformed into a quantitative metric of volitional limb movement (“Q”). This metric permits an objective assessment of injury, natural recovery as well as potential efficacy of candidate treatments. A valid non human primate model of traumatic spinal cord injury (TSCI) is essential to evaluate and develop new treatments. In previous experiments, it has been demonstrated that a transmitter can be implanted in the macaque fasicularis monkey that measures electromyographic data from the musculature of the tail. As well, previous experiments have demonstrated that selective lesions can be created in the lower thoracic spinal cord that does not cause limb weakness and/or bowel dysfunction. The histopathological features of these lesions appear similar to human TSCI. This paper describes a method by which the EMG data can be transformed into a quantitative metric of volitional limb movement (“Q”). This metric permits an objective assessment of injury, natural recovery as well as potential efficacy of candidate treatments.
出处 《Open Journal of Veterinary Medicine》 2015年第7期161-168,共8页 兽医学(英文)
关键词 SPINAL CORD Injury ANIMAL Model ELECTROMYOGRAPHY Spinal Cord Injury Animal Model Electromyography
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部