期刊文献+

Comparative Assessment of Melatonin-Afforded Protection in Liver, Kidney and Heart of Male Mice against Doxorubicin Induced Toxicity

Comparative Assessment of Melatonin-Afforded Protection in Liver, Kidney and Heart of Male Mice against Doxorubicin Induced Toxicity
下载PDF
导出
摘要 Melatonin (MEL) was investigated for protection against the anthracycline antibiotic doxorubicin (Dox) that is well known for its oxidative damage to various body organs. It was aimed to have a comparison of this protection to heart, liver and kidney in the treated subjects. In this study, groups of mice were treated with Dox and melatonin and their individual or combined effects were evaluated by assessing lipidperoxidation, non-protein sulfhydryls (NP-SH) and nitrate/nitrite (NO) contents in these tissues. Plasma aminotransferases, LDH and CK-MB enzyme activities were measured. Moreover, these tissues were subject to histopathological assessment. MEL co-treatment significantly prevented any rise in lipidperoxides more significantly in heart and liver as compared to kidney. In tandem, MEL prevented a decline in GSH that was observed by Dox alone in liver and kidney. Dox significantly increased total NO levels in all the tissues. Melatonin at both dose levels could not afford protection against nitrosative stress. MEL in combination treatment provided significant Melatonin (MEL) was investigated for protection against the anthracycline antibiotic doxorubicin (Dox) that is well known for its oxidative damage to various body organs. It was aimed to have a comparison of this protection to heart, liver and kidney in the treated subjects. In this study, groups of mice were treated with Dox and melatonin and their individual or combined effects were evaluated by assessing lipidperoxidation, non-protein sulfhydryls (NP-SH) and nitrate/nitrite (NO) contents in these tissues. Plasma aminotransferases, LDH and CK-MB enzyme activities were measured. Moreover, these tissues were subject to histopathological assessment. MEL co-treatment significantly prevented any rise in lipidperoxides more significantly in heart and liver as compared to kidney. In tandem, MEL prevented a decline in GSH that was observed by Dox alone in liver and kidney. Dox significantly increased total NO levels in all the tissues. Melatonin at both dose levels could not afford protection against nitrosative stress. MEL in combination treatment provided significant (P
出处 《Pharmacology & Pharmacy》 2013年第8期590-598,共9页 药理与制药(英文)
关键词 Melatonin DOXORUBICIN HEART LIVER KIDNEY Lipidperoxidation Non-Protein Sulfhydryls NITRIC Oxide Plasma Enzymes Mice Melatonin Doxorubicin Heart Liver Kidney Lipidperoxidation Non-Protein Sulfhydryls Nitric Oxide Plasma Enzymes Mice
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部