期刊文献+

The Effect of MRP5-Expression on Human Erythroleukemia (HEL) Cell Growth and cGMP Levels

The Effect of MRP5-Expression on Human Erythroleukemia (HEL) Cell Growth and cGMP Levels
下载PDF
导出
摘要 Background: Previous studies of patients with acute leukemia showed that plasma cGMP levels were markedly elevated before treatment, fell after successful therapy but increased after relapse. In many cells high concentrations of GMP have an antiproliferative effect. The cellular cGMP extrusion from cancer cells may represent an acquired resistance against an endogenous antiproliferative signal molecule. Multidrug resistance associated protein 5 (MRP5) has been identified as an important cGMP transporter. Methods: A human erythroleukemia cell line (HEL) was used to study the impact of cGMP and cGMP-elevating compounds like theophylline, sodium nitroprusside (SNP) and sodium nitrite (NaNO2). MRP5 was overexpressed in HEL cells by transfection. Concentrations of cGMP were determined with RIA or HPLC and cell densities were determined by cytometry. Results: The concentration ratio between extra- and intracellular cGMP concentrations was >1, meaning that HEL cells extruded cGMP against a concentration gradient and MRP5 was identified in these cells. In some cell types butyrate increases cellular cGMP levels by stimulating soluble guanylyl cyclase (sGC) and thereby the cellular efflux. This effect did not exist for HEL cells. MRP5 transfected HEL cells which were exposed to cGMP was clearly more sensitive to the antiproliferative effect than the wild type. On the other hand, exposing the transfected HEL cells to cGMP-elevating agents (theophylline, SNP and NaNO<sub>2</sub>) showed less sensitivity than the wildtype. Conclusion: This study supports the idea that some cancers acquire resistance against endogenous signal molecules with antiproliferative potency. Background: Previous studies of patients with acute leukemia showed that plasma cGMP levels were markedly elevated before treatment, fell after successful therapy but increased after relapse. In many cells high concentrations of GMP have an antiproliferative effect. The cellular cGMP extrusion from cancer cells may represent an acquired resistance against an endogenous antiproliferative signal molecule. Multidrug resistance associated protein 5 (MRP5) has been identified as an important cGMP transporter. Methods: A human erythroleukemia cell line (HEL) was used to study the impact of cGMP and cGMP-elevating compounds like theophylline, sodium nitroprusside (SNP) and sodium nitrite (NaNO2). MRP5 was overexpressed in HEL cells by transfection. Concentrations of cGMP were determined with RIA or HPLC and cell densities were determined by cytometry. Results: The concentration ratio between extra- and intracellular cGMP concentrations was >1, meaning that HEL cells extruded cGMP against a concentration gradient and MRP5 was identified in these cells. In some cell types butyrate increases cellular cGMP levels by stimulating soluble guanylyl cyclase (sGC) and thereby the cellular efflux. This effect did not exist for HEL cells. MRP5 transfected HEL cells which were exposed to cGMP was clearly more sensitive to the antiproliferative effect than the wild type. On the other hand, exposing the transfected HEL cells to cGMP-elevating agents (theophylline, SNP and NaNO<sub>2</sub>) showed less sensitivity than the wildtype. Conclusion: This study supports the idea that some cancers acquire resistance against endogenous signal molecules with antiproliferative potency.
作者 Xiaoyan Chen Roy A. Lysaa Ragnhild Jaeger Emanuel Boadu Georg Sager Xiaoyan Chen;Roy A. Lysaa;Ragnhild Jaeger;Emanuel Boadu;Georg Sager(Medical Pharmacology and Toxicology, Department of Medical Biology, Faculty of Health Sciences, Arctic University of Norway, Tromso, Norway)
出处 《Pharmacology & Pharmacy》 2016年第1期64-70,共7页 药理与制药(英文)
关键词 Cyclic GMP MRP5 Resistance CANCER GROWTH REGULATION Cyclic GMP MRP5 Resistance Cancer Growth Regulation
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部