摘要
Drug-eluting stents have been successful in reducing in-stent restenosis but are not suitable for all lesion types and have been implicated in causing late stent thrombosis due to incomplete regeneration of the endothelial cell layer. In this study we implanted stents coated with cicaprost, a prostacyclin analogue with a long plasma half-life and antiproliferative effects on vascular smooth muscle cells, into the iliac arteries of rabbits. At 28-day follow-up we compared neointima formation within the stented vessels and vascular function in adjacent vessels, to assess if cicaprost could reduce restenosis without impairing vessel function. Arteries implanted with cicaprost eluting stents had significantly more neointima compared to bare metal stents. In adjacent segments of artery, endothelium-dependent relaxation was impaired by the cicaprost-eluting stent but vasodilation to an endothelium-independent vasodilator was maintained. We conclude that the presence of the polymer and sub-optimal release of cicaprost from the stent may be responsible for the increased neointma and impaired functional recovery of the endothelium observed. Further experiments should be aimed at optimising release of cicaprost and exploring different stent polymer coatings.
Drug-eluting stents have been successful in reducing in-stent restenosis but are not suitable for all lesion types and have been implicated in causing late stent thrombosis due to incomplete regeneration of the endothelial cell layer. In this study we implanted stents coated with cicaprost, a prostacyclin analogue with a long plasma half-life and antiproliferative effects on vascular smooth muscle cells, into the iliac arteries of rabbits. At 28-day follow-up we compared neointima formation within the stented vessels and vascular function in adjacent vessels, to assess if cicaprost could reduce restenosis without impairing vessel function. Arteries implanted with cicaprost eluting stents had significantly more neointima compared to bare metal stents. In adjacent segments of artery, endothelium-dependent relaxation was impaired by the cicaprost-eluting stent but vasodilation to an endothelium-independent vasodilator was maintained. We conclude that the presence of the polymer and sub-optimal release of cicaprost from the stent may be responsible for the increased neointma and impaired functional recovery of the endothelium observed. Further experiments should be aimed at optimising release of cicaprost and exploring different stent polymer coatings.
作者
Christopher McCormick
Robert L. Jones
Roger M. Wadsworth
Alexander B. Mullen
Simon Kennedy
Christopher McCormick;Robert L. Jones;Roger M. Wadsworth;Alexander B. Mullen;Simon Kennedy(Biomedical Engineering Department, University of Strathclyde, Glasgow, UK;Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK;Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK)