期刊文献+

Comparison between Diastolic Subendocardial Tissue Pressures Measured Directly or Calculated from Pressure-Flow Relations

Comparison between Diastolic Subendocardial Tissue Pressures Measured Directly or Calculated from Pressure-Flow Relations
下载PDF
导出
摘要 Changes in intramyocardial tissue pressure modulate the relationship between coronary pressure and flow during the cardiac cycle. The present study compared the relation between measured and calculated diastolic subendocardial tissue pressure and coronary pressure at zero flow in anesthetized dogs after modulation of either coronary sinus (i.e. Fogarty catheter) or left ventricular intracavity (i.e. volume loading) pressure. Experiments were conducted in anesthetized, instrumented dogs;coronary pressure flow relations were constructed during pharmacologic vasodilatation and intramyocardial tissue pressure was measured using micromanometer pressure sensors. Elevated coronary sinus pressures did not affect subendocardial pressure-flow relations signifying that diastolic tissue pressure within this layer is the effective coronary back pressure. Higher left ventricular intracavity pressure did not affect either diastolic subendocardial tissue pressure or pressure flow relations within this layer. Results show a direct linear relation (y = 1.106x - 0.652;r2 = 0.59. P = 0.001) between measured and calculated diastolic subendocardial tissue pressure and coronary pressure at zero-flow over a wide range of pressures after either LV systemic or coronary sinus pressure modulation. Knowledge of back pressure in the subendocardium is useful for the evaluation of efficacy of cardiac interventions on myocardial perfusion particularly at the level of the microcirculation. Changes in intramyocardial tissue pressure modulate the relationship between coronary pressure and flow during the cardiac cycle. The present study compared the relation between measured and calculated diastolic subendocardial tissue pressure and coronary pressure at zero flow in anesthetized dogs after modulation of either coronary sinus (i.e. Fogarty catheter) or left ventricular intracavity (i.e. volume loading) pressure. Experiments were conducted in anesthetized, instrumented dogs;coronary pressure flow relations were constructed during pharmacologic vasodilatation and intramyocardial tissue pressure was measured using micromanometer pressure sensors. Elevated coronary sinus pressures did not affect subendocardial pressure-flow relations signifying that diastolic tissue pressure within this layer is the effective coronary back pressure. Higher left ventricular intracavity pressure did not affect either diastolic subendocardial tissue pressure or pressure flow relations within this layer. Results show a direct linear relation (y = 1.106x - 0.652;r2 = 0.59. P = 0.001) between measured and calculated diastolic subendocardial tissue pressure and coronary pressure at zero-flow over a wide range of pressures after either LV systemic or coronary sinus pressure modulation. Knowledge of back pressure in the subendocardium is useful for the evaluation of efficacy of cardiac interventions on myocardial perfusion particularly at the level of the microcirculation.
出处 《World Journal of Cardiovascular Diseases》 2017年第7期213-224,共12页 心血管病(英文)
关键词 Intramyocardial TISSUE PRESSURE Pressure-Flow RELATIONS Transmural Myocardial Blood FLOW Microspheres Coronary SINUS PRESSURE Volume Overload Intramyocardial Tissue Pressure Pressure-Flow Relations Transmural Myocardial Blood Flow Microspheres Coronary Sinus Pressure Volume Overload
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部