期刊文献+

Post-Movement Beta Rebound Is Related to Movement Connection

Post-Movement Beta Rebound Is Related to Movement Connection
下载PDF
导出
摘要 After 300 - 500 ms of various movements, a significant rebound in beta rhythm power is observed. This phenomenon is called Post-Movement Beta Rebound (PMBR). Previous studies have been carried out in a single movement context in the exploration of its functional significance, and few studies have been conducted in connected movements. Therefore, this study used the cue-induced delayed task paradigm to examine the PMBR change in the motor cortex of the 20 adults when they were moving under the single or connected movements condition. It was found on right-hand movements that the PMBR of the first movement in a connected condition was stronger than that of a single movement, and it was also observed on both left- and right-hand movements that the PMBR of the first movement was stronger than that of the last movement in a connected condition. The results show that the PMBR after the connected movement was stronger than the no movement connection, reflecting that PMBR plays an important role in the preparation of subsequent movements. After 300 - 500 ms of various movements, a significant rebound in beta rhythm power is observed. This phenomenon is called Post-Movement Beta Rebound (PMBR). Previous studies have been carried out in a single movement context in the exploration of its functional significance, and few studies have been conducted in connected movements. Therefore, this study used the cue-induced delayed task paradigm to examine the PMBR change in the motor cortex of the 20 adults when they were moving under the single or connected movements condition. It was found on right-hand movements that the PMBR of the first movement in a connected condition was stronger than that of a single movement, and it was also observed on both left- and right-hand movements that the PMBR of the first movement was stronger than that of the last movement in a connected condition. The results show that the PMBR after the connected movement was stronger than the no movement connection, reflecting that PMBR plays an important role in the preparation of subsequent movements.
作者 Haiwen Qi Haiwen Qi(School of Education, Soochow University, Suzhou, China)
机构地区 School of Education
出处 《World Journal of Neuroscience》 2022年第2期93-104,共12页 神经科学国际期刊(英文)
关键词 Motor Preparing Post-Movement Beta Rebound EEG Recording Movement Connection Motor Preparing Post-Movement Beta Rebound EEG Recording Movement Connection
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部