期刊文献+

Parallel Multicore CSB Format and Its Sparse Matrix Vector Multiplication

Parallel Multicore CSB Format and Its Sparse Matrix Vector Multiplication
下载PDF
导出
摘要 Sparse Matrix Vector Multiplication (SpMV) is one of the most basic problems in scientific and engineering computations. It is the basic operation in many realms, such as solving linear systems or eigenvalue problems. Nowadays, more than 90 percent of the world’s highest performance parallel computers in the top 500 use multicore architecture. So it is important practically to design the efficient methods of computing SpMV on multicore parallel computers. Usually, algorithms based on compressed sparse row (CSR) format suffer from a number of nonzero elements on each row so hardly as to use the multicore structure efficiently. Compressed Sparse Block (CSB) format is an effective storage format which can compute SpMV efficiently in a multicore computer. This paper presents a parallel multicore CSB format and SpMV based on it. We carried out numerical experiments on a parallel multicore computer. The results show that our parallel multicore CSB format and SpMV algorithm can reach high speedup, and they are highly scalable for banded matrices. Sparse Matrix Vector Multiplication (SpMV) is one of the most basic problems in scientific and engineering computations. It is the basic operation in many realms, such as solving linear systems or eigenvalue problems. Nowadays, more than 90 percent of the world’s highest performance parallel computers in the top 500 use multicore architecture. So it is important practically to design the efficient methods of computing SpMV on multicore parallel computers. Usually, algorithms based on compressed sparse row (CSR) format suffer from a number of nonzero elements on each row so hardly as to use the multicore structure efficiently. Compressed Sparse Block (CSB) format is an effective storage format which can compute SpMV efficiently in a multicore computer. This paper presents a parallel multicore CSB format and SpMV based on it. We carried out numerical experiments on a parallel multicore computer. The results show that our parallel multicore CSB format and SpMV algorithm can reach high speedup, and they are highly scalable for banded matrices.
出处 《Advances in Linear Algebra & Matrix Theory》 2014年第1期1-8,共8页 线性代数与矩阵理论研究进展(英文)
关键词 SpMV MULTICORE PARALLEL COMPUTERS PARALLEL MULTICORE CSB FORMAT SpMV Multicore Parallel Computers Parallel Multicore CSB Format
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部