期刊文献+

A Subspace Iteration for Calculating a Cluster of Exterior Eigenvalues

A Subspace Iteration for Calculating a Cluster of Exterior Eigenvalues
下载PDF
导出
摘要 In this paper we present a new subspace iteration for calculating eigenvalues of symmetric matrices. The method is designed to compute a cluster of k exterior eigenvalues. For example, k eigenvalues with the largest absolute values, the k algebraically largest eigenvalues, or the k algebraically smallest eigenvalues. The new iteration applies a Restarted Krylov method to collect information on the desired cluster. It is shown that the estimated eigenvalues proceed monotonically toward their limits. Another innovation regards the choice of starting points for the Krylov subspaces, which leads to fast rate of convergence. Numerical experiments illustrate the viability of the proposed ideas. In this paper we present a new subspace iteration for calculating eigenvalues of symmetric matrices. The method is designed to compute a cluster of k exterior eigenvalues. For example, k eigenvalues with the largest absolute values, the k algebraically largest eigenvalues, or the k algebraically smallest eigenvalues. The new iteration applies a Restarted Krylov method to collect information on the desired cluster. It is shown that the estimated eigenvalues proceed monotonically toward their limits. Another innovation regards the choice of starting points for the Krylov subspaces, which leads to fast rate of convergence. Numerical experiments illustrate the viability of the proposed ideas.
作者 Achiya Dax
机构地区 Hydrological Service
出处 《Advances in Linear Algebra & Matrix Theory》 2015年第3期76-89,共14页 线性代数与矩阵理论研究进展(英文)
关键词 EXTERIOR EIGENVALUES Symmetric Matrices SUBSPACE ITERATIONS INTERLACING Restarted Krylov Methods Exterior Eigenvalues Symmetric Matrices Subspace Iterations Interlacing Restarted Krylov Methods
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部