期刊文献+

A New Type of Restarted Krylov Methods 被引量:1

A New Type of Restarted Krylov Methods
下载PDF
导出
摘要 In this paper we present a new type of Restarted Krylov methods for calculating peripheral eigenvalues of symmetric matrices. The new framework avoids the Lanczos tridiagonalization process, and the use of polynomial filtering. This simplifies the restarting mechanism and allows the introduction of several modifications. Convergence is assured by a monotonicity property that pushes the eigenvalues toward their limits. The Krylov matrices that we use lead to fast rate of convergence. Numerical experiments illustrate the usefulness of the proposed approach. In this paper we present a new type of Restarted Krylov methods for calculating peripheral eigenvalues of symmetric matrices. The new framework avoids the Lanczos tridiagonalization process, and the use of polynomial filtering. This simplifies the restarting mechanism and allows the introduction of several modifications. Convergence is assured by a monotonicity property that pushes the eigenvalues toward their limits. The Krylov matrices that we use lead to fast rate of convergence. Numerical experiments illustrate the usefulness of the proposed approach.
作者 Achiya Dax
机构地区 Hydrological Service
出处 《Advances in Linear Algebra & Matrix Theory》 2017年第1期18-28,共11页 线性代数与矩阵理论研究进展(英文)
关键词 Restarted Krylov Methods EXTERIOR EIGENVALUES Symmetric Matrices MONOTONICITY STARTING VECTORS Restarted Krylov Methods Exterior Eigenvalues Symmetric Matrices Monotonicity Starting Vectors
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部