期刊文献+

Iterative Methods for Solving the Nonlinear Matrix Equation <i>X</i>-<i>A</i>*<i>X</i><sup>p</sup><i>A</i>-<i>B</i>*<i>X</i><sup>-q</sup><i>B</i>=<i>I</i>(0<<i>p</i>,<i>q</i><1)

Iterative Methods for Solving the Nonlinear Matrix Equation <i>X</i>-<i>A</i>*<i>X</i><sup>p</sup><i>A</i>-<i>B</i>*<i>X</i><sup>-q</sup><i>B</i>=<i>I</i>(0<<i>p</i>,<i>q</i><1)
下载PDF
导出
摘要 Consider the nonlinear matrix equation X-A*XpA-B*X-qB=I (0p,q1). By using the fixed point theorem for mixed monotone operator in a normal cone, we prove that the equation with 0p,q1 always has the unique positive definite solution. Two different iterative methods are given, including the basic fixed point iterative method and the multi-step stationary iterative method. Numerical examples show that the iterative methods are feasible and effective. Consider the nonlinear matrix equation X-A*XpA-B*X-qB=I (0p,q1). By using the fixed point theorem for mixed monotone operator in a normal cone, we prove that the equation with 0p,q1 always has the unique positive definite solution. Two different iterative methods are given, including the basic fixed point iterative method and the multi-step stationary iterative method. Numerical examples show that the iterative methods are feasible and effective.
作者 Dongjie Gao
出处 《Advances in Linear Algebra & Matrix Theory》 2017年第3期72-78,共7页 线性代数与矩阵理论研究进展(英文)
关键词 Nonlinear Matrix Equation Positive Definite Solution Iterative Method Normal Cone Nonlinear Matrix Equation Positive Definite Solution Iterative Method Normal Cone
  • 相关文献

参考文献2

二级参考文献28

  • 1李静,张玉海.矩阵方程X-A*X^(-q)A=Q当q>1时的Hermite正定解[J].工程数学学报,2005,22(4):679-686. 被引量:11
  • 2Zabezyk J, Remarks on the control of discrete time distributed parameter systems[J]. SIAM J Control, 1974, 12:721-735
  • 3Anderson W N, Kleindorfer G B, Kleindorfer M B, Woodroofe M B. Consistent estimates of the parameters of a linear systems[J]. Ann Math Statist, 1969, 40:2064-2075
  • 4Bucy R S. A Priori Bounds for the Riccati Equation, in Proceedings of the Berkley Symposium on Mathematical Statistics and Probability, Vol. Ⅲ: Probability Theory[M]. Berkeley: Univ of California Press, 1972:645-656
  • 5Pusz W, Woronowitz S L. Functional caculus for sequlinear forms and purification map[J]. Rep Math Phys, 1975, 8:159-170
  • 6Anderson W N, Morley T D, Trapp G E. The Cascade Limit, the Shorted Operator and Quadratic Optimal Control[C]//Christopher I Byrnes, Clyde F Martin, and Richard E Saeks, Eds in Linear Circuits, Systems and Signal Processsing: Theory and Application. New York: North-Holland, 1988:3-7
  • 7Ouellette D V. Schur complements and statistics[J]. Linear Algebra Appl, 1981, 36:187-295
  • 8Buzbee B L, Golub G H, Nielson C W. On direct methods for solving Poisson's equations[J]. SIAM J Numer Anal, 1970, 7:627-656
  • 9Hasanov V I, Ivanov I G. On two perturbation estimates of the extreme solutions to the equations X ± A^*X^-1A = Q[J]. Linear Algebra Appl, 2006, 413:81-92
  • 10Ferrante A. Hermitian solutions of the equation X = Q + NX^-1N^*[J]. Linear Algebra Appl, 1996, 247: 359-373

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部