摘要
In this article we present a Riesz-type generalization of the concept of second variation of normed space valued functions defined on an interval [a,b]R. We show that a function f [a,b], where X is a reflexive Banach space, is of bounded second Φ-variation, in the sense of Riesz, if and only if it can be expressed as the (Bochner) integral of a function of bounded (first) $\Phi$-variation. We provide also a Riesz lemma type inequality to estimate the total second Riesz-Φ-variation introduced.
In this article we present a Riesz-type generalization of the concept of second variation of normed space valued functions defined on an interval [a,b]R. We show that a function f [a,b], where X is a reflexive Banach space, is of bounded second Φ-variation, in the sense of Riesz, if and only if it can be expressed as the (Bochner) integral of a function of bounded (first) $\Phi$-variation. We provide also a Riesz lemma type inequality to estimate the total second Riesz-Φ-variation introduced.