期刊文献+

On Second Riesz Φ-Variation of Normed Space Valued Maps

On Second Riesz Φ-Variation of Normed Space Valued Maps
下载PDF
导出
摘要 In this article we present a Riesz-type generalization of the concept of second variation of normed space valued functions defined on an interval [a,b]R. We show that a function f [a,b], where X is a reflexive Banach space, is of bounded second Φ-variation, in the sense of Riesz, if and only if it can be expressed as the (Bochner) integral of a function of bounded (first) $\Phi$-variation. We provide also a Riesz lemma type inequality to estimate the total second Riesz-Φ-variation introduced. In this article we present a Riesz-type generalization of the concept of second variation of normed space valued functions defined on an interval [a,b]R. We show that a function f [a,b], where X is a reflexive Banach space, is of bounded second Φ-variation, in the sense of Riesz, if and only if it can be expressed as the (Bochner) integral of a function of bounded (first) $\Phi$-variation. We provide also a Riesz lemma type inequality to estimate the total second Riesz-Φ-variation introduced.
机构地区 不详
出处 《Advances in Pure Mathematics》 2012年第1期45-58,共14页 理论数学进展(英文)
关键词 YOUNG FUNCTION Φ-Variation SECOND Φ-Variation of a FUNCTION Young Function Φ-Variation Second Φ-Variation of a Function
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部