期刊文献+

<i>L<sup>p</sup></i>Polyharmonic Dirichlet Problems in the Upper Half Plane

<i>L<sup>p</sup></i>Polyharmonic Dirichlet Problems in the Upper Half Plane
下载PDF
导出
摘要 In this article, a class of Dirichlet problem with Lp boundary data for poly-harmonic function in the upper half plane is mainly investigated. By introducing a sequence of kernel functions called higher order Poisson kernels and a hierarchy of integral operators called higher order Pompeiu operators, we obtain a main result on integral representation solution as well as the uniqueness of the polyharmonic Dirichlet problem under a certain estimate. In this article, a class of Dirichlet problem with Lp boundary data for poly-harmonic function in the upper half plane is mainly investigated. By introducing a sequence of kernel functions called higher order Poisson kernels and a hierarchy of integral operators called higher order Pompeiu operators, we obtain a main result on integral representation solution as well as the uniqueness of the polyharmonic Dirichlet problem under a certain estimate.
作者 Kanda Pan
出处 《Advances in Pure Mathematics》 2015年第14期828-834,共7页 理论数学进展(英文)
关键词 DIRICHLET Problem Polyharmonic FUNCTION HIGHER Order Poisson KERNELS HIGHER Order Pompeiu Operators Non-Tangential Maximal FUNCTION Uniqueness Dirichlet Problem Polyharmonic Function Higher Order Poisson Kernels Higher Order Pompeiu Operators Non-Tangential Maximal Function Uniqueness
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部