摘要
The goal of this paper is to confirm that the unitary group U(H) on an infinite dimensional complex Hilbert space is a topological group in its strong topology, and to emphasize the importance of this property for applications in topology. In addition, it is shown that U(H) in its strong topology is metrizable and contractible if H is separable. As an application Hilbert bundles are classified by homotopy.
The goal of this paper is to confirm that the unitary group U(H) on an infinite dimensional complex Hilbert space is a topological group in its strong topology, and to emphasize the importance of this property for applications in topology. In addition, it is shown that U(H) in its strong topology is metrizable and contractible if H is separable. As an application Hilbert bundles are classified by homotopy.