摘要
Grandi’s paradox, which was posed for a real function of the form <span style="white-space:nowrap;">1/(1+ <em>x</em>)</span>, has been resolved and extended to complex valued functions. Resolution of this approximately three-hundred-year-old paradox is accomplished by the use of a consistent truncation approach that can be applied to all the series expansions of Grandi-type functions. Furthermore, a new technique for improving the convergence characteristics of power series with alternating signs is introduced. The technique works by successively averaging a series at different orders of truncation. A sound theoretical justification of the successive averaging method is demonstrated by two different series expansions of the function <span style="white-space:nowrap;">1/(1+ e<sup><em>x</em> </sup>)</span> . Grandi-type complex valued functions such as <span style="white-space:nowrap;">1/(<em>i</em> + <em>x</em>)</span> are expressed as consistently-truncated and convergence-improved forms and Fagnano’s formula is established from the series expansions of these functions. A Grandi-type general complex valued function <img src="Edit_f4efd7cd-6853-4ca4-b4dc-00f0b798c277.png" width="80" height="24" alt="" /> is introduced and expanded to a consistently truncated and successively averaged series. Finally, an unorthodox application of the successive averaging method to polynomials is presented.
Grandi’s paradox, which was posed for a real function of the form <span style="white-space:nowrap;">1/(1+ <em>x</em>)</span>, has been resolved and extended to complex valued functions. Resolution of this approximately three-hundred-year-old paradox is accomplished by the use of a consistent truncation approach that can be applied to all the series expansions of Grandi-type functions. Furthermore, a new technique for improving the convergence characteristics of power series with alternating signs is introduced. The technique works by successively averaging a series at different orders of truncation. A sound theoretical justification of the successive averaging method is demonstrated by two different series expansions of the function <span style="white-space:nowrap;">1/(1+ e<sup><em>x</em> </sup>)</span> . Grandi-type complex valued functions such as <span style="white-space:nowrap;">1/(<em>i</em> + <em>x</em>)</span> are expressed as consistently-truncated and convergence-improved forms and Fagnano’s formula is established from the series expansions of these functions. A Grandi-type general complex valued function <img src="Edit_f4efd7cd-6853-4ca4-b4dc-00f0b798c277.png" width="80" height="24" alt="" /> is introduced and expanded to a consistently truncated and successively averaged series. Finally, an unorthodox application of the successive averaging method to polynomials is presented.
作者
Serdar Beji
Serdar Beji(Faculty of Naval Architecture and Ocean Engineering, Istanbul Technical University, Maslak, Istanbul, Turkey)