期刊文献+

The Class of Orderable Groups Is a Quasi-Variety with Undecidable Theory

The Class of Orderable Groups Is a Quasi-Variety with Undecidable Theory
下载PDF
导出
摘要 Let <em>G</em> be a group. <em>G</em> is right-orderable provided it admits a total order ≤ satisfying <em>hg</em><sub>1</sub> <span style="white-space:normal;">≤ <span style="white-space:normal;"><em>hg</em><sub>2 </sub></span></span>whenever <em style="white-space:normal;">g</em><sub style="white-space:normal;">1</sub><span style="white-space:normal;"> </span><span style="white-space:normal;">≤ <i>g</i><sub>2</sub></span>. <em>G</em> is orderable provided it admits a total order ≤ satisfying both: <em style="white-space:normal;">hg</em><sub style="white-space:normal;">1</sub><span style="white-space:normal;"> </span><span style="white-space:normal;">≤ <em>hg</em><sub>2</sub></span> whenever <span style="white-space:nowrap;"><em>g</em><sub>1</sub> ≤ <em>g</em><sub>2</sub></span> and <em style="white-space:normal;">g</em><sub style="white-space:normal;">1</sub><em style="white-space:normal;">h</em><span style="white-space:normal;"> ≤ </span><em style="white-space:normal;">g</em><sub style="white-space:normal;">2</sub><em style="white-space:normal;">h</em> whenever <em>g</em><sub>1</sub> ≤ <em>g</em><sub>2</sub>. A classical result shows that free groups are orderable. In this paper, we prove that left-orderable groups and orderable groups are quasivarieties of groups both with undecidable theory. For orderable groups, we find an explicit set of universal axioms. Let <em>G</em> be a group. <em>G</em> is right-orderable provided it admits a total order ≤ satisfying <em>hg</em><sub>1</sub> <span style="white-space:normal;">≤ <span style="white-space:normal;"><em>hg</em><sub>2 </sub></span></span>whenever <em style="white-space:normal;">g</em><sub style="white-space:normal;">1</sub><span style="white-space:normal;"> </span><span style="white-space:normal;">≤ <i>g</i><sub>2</sub></span>. <em>G</em> is orderable provided it admits a total order ≤ satisfying both: <em style="white-space:normal;">hg</em><sub style="white-space:normal;">1</sub><span style="white-space:normal;"> </span><span style="white-space:normal;">≤ <em>hg</em><sub>2</sub></span> whenever <span style="white-space:nowrap;"><em>g</em><sub>1</sub> ≤ <em>g</em><sub>2</sub></span> and <em style="white-space:normal;">g</em><sub style="white-space:normal;">1</sub><em style="white-space:normal;">h</em><span style="white-space:normal;"> ≤ </span><em style="white-space:normal;">g</em><sub style="white-space:normal;">2</sub><em style="white-space:normal;">h</em> whenever <em>g</em><sub>1</sub> ≤ <em>g</em><sub>2</sub>. A classical result shows that free groups are orderable. In this paper, we prove that left-orderable groups and orderable groups are quasivarieties of groups both with undecidable theory. For orderable groups, we find an explicit set of universal axioms.
作者 Benjamin Fine Anthony Gaglione Gerhard Rosenberger Dennis Spellman Benjamin Fine;Anthony Gaglione;Gerhard Rosenberger;Dennis Spellman(Department of Mathematics, Fairfield University, Fairfield, Connecticut, USA;Department of Mathematics, United States Naval Academy, Annapolis, Maryland, USA;Fachbereich Mathematik, University of Hamburg, Bundestrasse, Hamburg, Germany;Department of Statistics, Temple University, Philadelphia, Pennsylvania, USA)
出处 《Advances in Pure Mathematics》 2021年第3期180-186,共7页 理论数学进展(英文)
关键词 Orderable Group Left Orderable Group Quasi-Variety Orderable Group Left Orderable Group Quasi-Variety
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部