期刊文献+

Lie Groups Actions on Non Orientable <i>n</i>-Dimensional Complex Manifolds 被引量:3

Lie Groups Actions on Non Orientable <i>n</i>-Dimensional Complex Manifolds
下载PDF
导出
摘要 Analytic atlases on <img src="Edit_948e45b7-cbef-425e-bb79-28648b859994.png" width="23" height="22" alt="" /> can be easily defined making it an <em>n</em>-dimensional complex manifold. Then with the help of bi-M<span style="white-space:nowrap;"><span style="white-space:nowrap;">&#246;</span></span>bius transformations in complex coordinates Abelian groups are constructed making this manifold a Lie group. Actions of Lie groups on differentiable manifolds are well known and serve different purposes. We have introduced in previous works actions of Lie groups on non orientable Klein surfaces. The purpose of this work is to extend those studies to non orientable <em>n</em>-dimensional complex manifolds. Such manifolds are obtained by factorizing <img src="Edit_7e5721ee-bb7f-4224-bd52-7d4641ac1c73.png" width="23" height="22" alt="" /> with the two elements group of a fixed point free antianalytic involution of <img src="Edit_ddfdac64-b296-48c5-9bb2-932eb3d76008.png" width="23" height="22" alt="" />. Involutions <strong>h(z)</strong> of this kind are obtained linearly by composing special M<span style="white-space:nowrap;"><span style="white-space:nowrap;">&#246;</span></span>bius transformations of the planes with the mapping <img src="Edit_4cda269a-9399-41ae-a5da-0c9d18a419ab.png" width="89" height="24" alt="" /><img src="Edit_4cda269a-9399-41ae-a5da-0c9d18a419ab.png" width="85" height="22" alt="" />. A convenient partition of <img src="Edit_9e899708-41b0-4351-a12b-cc6efb5b1581.png" width="23" height="22" alt="" /> is performed which helps defining an internal operation on <img src="Edit_7cd42987-68f8-4e4c-9382-cbc68b56377e.png" width="49" height="26" alt="" /> and finally actions of the previously defined Lie groups on the non orientable manifold <img src="Edit_5740b48c-f9ea-438d-a87d-8cdc1f83662b.png" width="49" height="25" alt="" /> are displayed. Analytic atlases on <img src="Edit_948e45b7-cbef-425e-bb79-28648b859994.png" width="23" height="22" alt="" /> can be easily defined making it an <em>n</em>-dimensional complex manifold. Then with the help of bi-M<span style="white-space:nowrap;"><span style="white-space:nowrap;">&#246;</span></span>bius transformations in complex coordinates Abelian groups are constructed making this manifold a Lie group. Actions of Lie groups on differentiable manifolds are well known and serve different purposes. We have introduced in previous works actions of Lie groups on non orientable Klein surfaces. The purpose of this work is to extend those studies to non orientable <em>n</em>-dimensional complex manifolds. Such manifolds are obtained by factorizing <img src="Edit_7e5721ee-bb7f-4224-bd52-7d4641ac1c73.png" width="23" height="22" alt="" /> with the two elements group of a fixed point free antianalytic involution of <img src="Edit_ddfdac64-b296-48c5-9bb2-932eb3d76008.png" width="23" height="22" alt="" />. Involutions <strong>h(z)</strong> of this kind are obtained linearly by composing special M<span style="white-space:nowrap;"><span style="white-space:nowrap;">&#246;</span></span>bius transformations of the planes with the mapping <img src="Edit_4cda269a-9399-41ae-a5da-0c9d18a419ab.png" width="89" height="24" alt="" /><img src="Edit_4cda269a-9399-41ae-a5da-0c9d18a419ab.png" width="85" height="22" alt="" />. A convenient partition of <img src="Edit_9e899708-41b0-4351-a12b-cc6efb5b1581.png" width="23" height="22" alt="" /> is performed which helps defining an internal operation on <img src="Edit_7cd42987-68f8-4e4c-9382-cbc68b56377e.png" width="49" height="26" alt="" /> and finally actions of the previously defined Lie groups on the non orientable manifold <img src="Edit_5740b48c-f9ea-438d-a87d-8cdc1f83662b.png" width="49" height="25" alt="" /> are displayed.
作者 T. Cao-Huu D. Ghisa T. Cao-Huu;D. Ghisa(Glendon College, York University, Toronto, Canada)
机构地区 Glendon College
出处 《Advances in Pure Mathematics》 2021年第6期604-610,共7页 理论数学进展(英文)
关键词 Analytic Atlas Complex Manifold Möbius Transformation Lie Group Action Analytic Atlas Complex Manifold Möbius Transformation Lie Group Action
  • 相关文献

同被引文献2

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部